The classical irrationality problem for $T$-fractions
HTML articles powered by AMS MathViewer
- by R. M. Hovstad
- Proc. Amer. Math. Soc. 110 (1990), 65-70
- DOI: https://doi.org/10.1090/S0002-9939-1990-1017002-0
- PDF | Request permission
Abstract:
Necessary and sufficient conditions are given for a $T$-fraction to correspond to a rational function.References
- Kari Hag, A theorem on $T$-fractions corresponding to a rational function, Proc. Amer. Math. Soc. 25 (1970), 247–253. MR 259081, DOI 10.1090/S0002-9939-1970-0259081-1
- Kari Hag, A convergence theorem for limitärperiodisch $T$-fractions of rational functions, Proc. Amer. Math. Soc. 32 (1972), 491–496. MR 291421, DOI 10.1090/S0002-9939-1972-0291421-1 T. H. Jefferson, Some additional properties of $T$-fractions, Ph. D. thesis, University of Colorado, Boulder, Colorado, 1969.
- William B. Jones and Wolfgang J. Thron, Continued fractions, Encyclopedia of Mathematics and its Applications, vol. 11, Addison-Wesley Publishing Co., Reading, Mass., 1980. Analytic theory and applications; With a foreword by Felix E. Browder; With an introduction by Peter Henrici. MR 595864
- Oskar Perron, Die Lehre von den Kettenbrüchen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957 (German). MR 0085349 —, Die Lehre von den Kettenbrüchen, Band I, 3. Aufl, Teubner, Stuttgart, 1954. H. Waadeland, Some properties of general $T$-fractions, Univ. i Trondheim, Matematisk Institutt (NLHT), Trondheim, 1978.
- Haakon Waadeland, Tales about tails, Proc. Amer. Math. Soc. 90 (1984), no. 1, 57–64. MR 722415, DOI 10.1090/S0002-9939-1984-0722415-5 —, General $T$-expansions of bounded functions, Dept. of Math., Trondheim, no. 2, 1983.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 65-70
- MSC: Primary 40A15; Secondary 11J70, 11J72, 41A21
- DOI: https://doi.org/10.1090/S0002-9939-1990-1017002-0
- MathSciNet review: 1017002