The corona property for bounded analytic functions in some Besov spaces
HTML articles powered by AMS MathViewer
- by Artur Nicolau
- Proc. Amer. Math. Soc. 110 (1990), 135-140
- DOI: https://doi.org/10.1090/S0002-9939-1990-1017007-X
- PDF | Request permission
Abstract:
In this paper, the corona theorem for the algebra of bounded analytic functions in the unit disc which are in the Besov space ${B_p},1 < p < \infty$, is proved.References
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Kwang Nan Chow and David Protas, The maximal ideal space of bounded, analytic, Dirichlet finite functions, Arch. Math. (Basel) 31 (1978/79), no. 3, 298–301. MR 521484, DOI 10.1007/BF01226451
- V. V. Peller and S. V. Khrushchëv, Hankel operators, best approximations and stationary Gaussian processes, Uspekhi Mat. Nauk 37 (1982), no. 1(223), 53–124, 176 (Russian). MR 643765
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- N. Th. Varopoulos, BMO functions and the $\overline \partial$-equation, Pacific J. Math. 71 (1977), no. 1, 221–273. MR 508035
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 135-140
- MSC: Primary 46J15; Secondary 46E35
- DOI: https://doi.org/10.1090/S0002-9939-1990-1017007-X
- MathSciNet review: 1017007