Convex bodies with few faces
HTML articles powered by AMS MathViewer
- by Keith Ball and Alain Pajor
- Proc. Amer. Math. Soc. 110 (1990), 225-231
- DOI: https://doi.org/10.1090/S0002-9939-1990-1019270-8
- PDF | Request permission
Abstract:
It is proved that it ${u_1}, \ldots ,{u_n}$ are vectors in ${{\mathbf {R}}^k},k \leq n,1 \leq p < \infty$ and \[ r = {\left ( {\frac {1}{k}{{\sum \limits _1^n {\left | {{u_i}} \right |} }^p}} \right )^{1/p}}\] then the volume of the symmetric convex body whose boundary functionals are $\pm {u_1}, \ldots , \pm {u_n}$, is bounded from below as \[ {\left | {\left \{ {x \in {{\mathbf {R}}^k}:\left | {\left \langle {x,{u_i}} \right \rangle } \right | \leq 1{\text { for every }}i} \right \}} \right |^{1/k}} \geq 1/\sqrt \rho r.\] An application to number theory is stated.References
- Imre Bárány and Zoltán Füredi, Computing the volume is difficult, Discrete Comput. Geom. 2 (1987), no. 4, 319–326. MR 911186, DOI 10.1007/BF02187886
- J. Bourgain, J. Lindenstrauss, and V. Milman, Approximation of zonoids by zonotopes, Acta Math. 162 (1989), no. 1-2, 73–141. MR 981200, DOI 10.1007/BF02392835 K. M. Ball and A. Pajor, On the entropy of convex bodies with "few" extreme points, in preparation.
- E. Bombieri and J. Vaaler, On Siegel’s lemma, Invent. Math. 73 (1983), no. 1, 11–32. MR 707346, DOI 10.1007/BF01393823
- Bernd Carl and Alain Pajor, Gel′fand numbers of operators with values in a Hilbert space, Invent. Math. 94 (1988), no. 3, 479–504. MR 969241, DOI 10.1007/BF01394273
- T. Figiel and W. B. Johnson, Large subspaces of $l^{n}_{\infty }$ and estimates of the Gordon-Lewis constant, Israel J. Math. 37 (1980), no. 1-2, 92–112. MR 599305, DOI 10.1007/BF02762871 E. D. Gluskin, Extremal properties of rectangular parallelipipeds and their applications to the geometry of Banach spaces, Mat. Sb. (N. S.) 136 (1988), 85-95.
- Mathieu Meyer and Alain Pajor, Sections of the unit ball of $L^n_p$, J. Funct. Anal. 80 (1988), no. 1, 109–123. MR 960226, DOI 10.1016/0022-1236(88)90068-7
- V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR 1008717, DOI 10.1007/BFb0090049
- Alain Pajor and Nicole Tomczak-Jaegermann, Subspaces of small codimension of finite-dimensional Banach spaces, Proc. Amer. Math. Soc. 97 (1986), no. 4, 637–642. MR 845980, DOI 10.1090/S0002-9939-1986-0845980-8
- Carsten Schütt, Entropy numbers of diagonal operators between symmetric Banach spaces, J. Approx. Theory 40 (1984), no. 2, 121–128. MR 732693, DOI 10.1016/0021-9045(84)90021-2
- Jeffrey D. Vaaler, A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979), no. 2, 543–553. MR 557952
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 225-231
- MSC: Primary 52A40; Secondary 11H46, 52A20
- DOI: https://doi.org/10.1090/S0002-9939-1990-1019270-8
- MathSciNet review: 1019270