Summands of permutation lattices for finite groups
HTML articles powered by AMS MathViewer
- by Gerald Cliff and Alfred Weiss
- Proc. Amer. Math. Soc. 110 (1990), 17-20
- DOI: https://doi.org/10.1090/S0002-9939-1990-1027091-5
- PDF | Request permission
Abstract:
Let $G$ be a finite group. An effective criterion is given for a ${\mathbf {Z}}G$-lattice to be a direct summand of a permutation lattice.References
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- Andreas W. M. Dress, The permutation class group of a finite group, J. Pure Appl. Algebra 6 (1975), 1–12. MR 360773, DOI 10.1016/0022-4049(75)90008-0
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
- Richard G. Swan, Noether’s problem in Galois theory, Emmy Noether in Bryn Mawr (Bryn Mawr, Pa., 1982) Springer, New York-Berlin, 1983, pp. 21–40. MR 713790
- Alfred Weiss, Rigidity of $p$-adic $p$-torsion, Ann. of Math. (2) 127 (1988), no. 2, 317–332. MR 932300, DOI 10.2307/2007056
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 17-20
- MSC: Primary 20C10; Secondary 20C11
- DOI: https://doi.org/10.1090/S0002-9939-1990-1027091-5
- MathSciNet review: 1027091