## On left derivations and related mappings

HTML articles powered by AMS MathViewer

- by M. Brešar and J. Vukman
- Proc. Amer. Math. Soc.
**110**(1990), 7-16 - DOI: https://doi.org/10.1090/S0002-9939-1990-1028284-3
- PDF | Request permission

## Abstract:

Let $R$ be a ring and $X$ be a left $R$-module. The purpose of this paper is to investigate additive mappings ${D_1}:R \to X$ and ${D_2}:R \to X$ that satisfy ${D_1}(ab) = a{D_1}(b) + b{D_1}(a),a,b \in R$ (left derivation) and ${D_2}({a^2}) = 2a{D_2}(a),a \in R$ (Jordan left derivation). We show, by the rather weak assumptions, that the existence of a nonzero Jordan left derivation of $R$ into $X$ implies $R$ is commutative. This result is used to prove two noncommutative extensions of the classical Singer-Wermer theorem.## References

- H. E. Bell and W. S. Martindale III,
*Centralizing mappings of semiprime rings*, Canad. Math. Bull.**30**(1987), no. 1, 92–101. MR**879877**, DOI 10.4153/CMB-1987-014-x - Frank F. Bonsall and John Duncan,
*Complete normed algebras*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR**0423029** - M. Brešar and J. Vukman,
*Jordan derivations on prime rings*, Bull. Austral. Math. Soc.**37**(1988), no. 3, 321–322. MR**943433**, DOI 10.1017/S0004972700026927 - M. Brešar and J. Vukman,
*On some additive mappings in rings with involution*, Aequationes Math.**38**(1989), no. 2-3, 178–185. MR**1018911**, DOI 10.1007/BF01840003 - H. G. Dales,
*Automatic continuity: a survey*, Bull. London Math. Soc.**10**(1978), no. 2, 129–183. MR**500923**, DOI 10.1112/blms/10.2.129 - I. N. Herstein,
*Jordan derivations of prime rings*, Proc. Amer. Math. Soc.**8**(1957), 1104–1110. MR**95864**, DOI 10.1090/S0002-9939-1957-0095864-2 - B. E. Johnson,
*Continuity of derivations on commutative algebras*, Amer. J. Math.**91**(1969), 1–10. MR**246127**, DOI 10.2307/2373262 - Svetozar Kurepa,
*The Cauchy functional equation and scalar product in vector spaces*, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II**19**(1964), 23–36 (English, with Serbo-Croatian summary). MR**171100** - Joseph H. Mayne,
*Centralizing automorphisms of prime rings*, Canad. Math. Bull.**19**(1976), no. 1, 113–115. MR**419499**, DOI 10.4153/CMB-1976-017-1 - Edward C. Posner,
*Derivations in prime rings*, Proc. Amer. Math. Soc.**8**(1957), 1093–1100. MR**95863**, DOI 10.1090/S0002-9939-1957-0095863-0 - A. M. Sinclair,
*Continuous derivations on Banach algebras*, Proc. Amer. Math. Soc.**20**(1969), 166–170. MR**233207**, DOI 10.1090/S0002-9939-1969-0233207-X - A. M. Sinclair,
*Jordan homomorphisms and derivations on semisimple Banach algebras*, Proc. Amer. Math. Soc.**24**(1970), 209–214. MR**250069**, DOI 10.1090/S0002-9939-1970-0250069-3 - Allan M. Sinclair,
*Automatic continuity of linear operators*, London Mathematical Society Lecture Note Series, No. 21, Cambridge University Press, Cambridge-New York-Melbourne, 1976. MR**0487371** - I. M. Singer and J. Wermer,
*Derivations on commutative normed algebras*, Math. Ann.**129**(1955), 260–264. MR**70061**, DOI 10.1007/BF01362370 - Bertram Yood,
*Continuous homomorphisms and derivations on Banach algebras*, Proceedings of the conference on Banach algebras and several complex variables (New Haven, Conn., 1983) Contemp. Math., vol. 32, Amer. Math. Soc., Providence, RI, 1984, pp. 279–284. MR**769517**, DOI 10.1090/conm/032/769517

## Bibliographic Information

- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**110**(1990), 7-16 - MSC: Primary 16W25; Secondary 16U80, 16W10, 16W80, 46H05
- DOI: https://doi.org/10.1090/S0002-9939-1990-1028284-3
- MathSciNet review: 1028284