## On linear groups over finite fields

HTML articles powered by AMS MathViewer

- by Ji Ping Zhang
- Proc. Amer. Math. Soc.
**110**(1990), 53-57 - DOI: https://doi.org/10.1090/S0002-9939-1990-1028297-1
- PDF | Request permission

## Abstract:

Let $G$ be a finite group with an Abelian Sylow $p$-subgroup $P$ $(p > 5)$, and $F$, a finite field of characteristic $p$. Set $H = {O^{pβ}}(G)$. If $G$ has a faithful*FG*-module $M$ such that ${\dim _F}M < p - 2$, then one of the following is true: (a) $P$ is normal in $G$, (b) $H/Z(H) \approx { \oplus _{i \leq t}}{L_2}({p^{{n_i}}})$, where ${n_i}$ and $t$ are positive integers and $2t < p - 2$, (c) $p = 7{\text {or}}11$ and $H \approx 2.{A_7}$ or ${J_1}$, respectively, ${\dim _F}M \geq p - 4$.

## References

- Richard Brauer,
*On groups whose order contains a prime number to the first power. I*, Amer. J. Math.**64**(1942), 401β420. MR**6537**, DOI 10.2307/2371693 - Richard Brauer,
*Representations of finite groups*, Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp.Β 133β175. MR**0178056** - Richard Brauer and Hsio-Fu Tuan,
*On simple groups of finite order. I*, Bull. Amer. Math. Soc.**51**(1945), 756β766. MR**15102**, DOI 10.1090/S0002-9904-1945-08441-9 - Hsio-Fu Tuan,
*On groups whose orders contain a prime number to the first power*, Ann. of Math. (2)**45**(1944), 110β140. MR**9397**, DOI 10.2307/1969079 - Walter Feit,
*Groups with a cyclic Sylow subgroup*, Nagoya Math. J.**27**(1966), 571β584. MR**199255** - Walter Feit,
*On finite linear groups*, J. Algebra**5**(1967), 378β400. MR**207818**, DOI 10.1016/0021-8693(67)90049-X - Walter Feit,
*The representation theory of finite groups*, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR**661045** - Ji Ping Zhang,
*Complex linear groups of degree at most $p-1$*, Classical groups and related topics (Beijing, 1987) Contemp. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1989, pp.Β 243β254. MR**982293**, DOI 10.1090/conm/082/982293
β, - Pamela A. Ferguson,
*Complex linear groups of degree at most $v-3$*, J. Algebra**93**(1985), no.Β 2, 246β252. MR**786752**, DOI 10.1016/0021-8693(85)90158-9 - H. I. Blau,
*Brauer trees and character degrees*, Proceedings of the Symposium on Modular Representations of Finite Groups (Math. Inst., Univ. Aarhus, Aarhus, 1978) Various Publications Series, vol. 29, Aarhus Univ., Aarhus, 1978, pp.Β 10β11. MR**539268** - Vicente Landazuri and Gary M. Seitz,
*On the minimal degrees of projective representations of the finite Chevalley groups*, J. Algebra**32**(1974), 418β443. MR**360852**, DOI 10.1016/0021-8693(74)90150-1 - Roger W. Carter,
*Simple groups of Lie type*, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR**0407163** - J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,
*$\Bbb {ATLAS}$ of finite groups*, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR**827219**
H. F. Blichfeldt, - Fletcher Gross,
*Automorphisms which centralize a Sylow $p$-subgroup*, J. Algebra**77**(1982), no.Β 1, 202β233. MR**665174**, DOI 10.1016/0021-8693(82)90287-3

*On linear groups of degrees at most*$|P| - 1$, J. Algebra (to appear).

*Finite collineation groups*, Univ. of Chicago Press, Chicago, 1917.

## Bibliographic Information

- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**110**(1990), 53-57 - MSC: Primary 20C20
- DOI: https://doi.org/10.1090/S0002-9939-1990-1028297-1
- MathSciNet review: 1028297