## Some isomorphisms of abelian groups involving the Tor functor

HTML articles powered by AMS MathViewer

- by Patrick Keef
- Proc. Amer. Math. Soc.
**110**(1990), 27-37 - DOI: https://doi.org/10.1090/S0002-9939-1990-1030735-5
- PDF | Request permission

## Abstract:

Given a reduced group $G$, the class of groups $A$ such that $A \cong \operatorname {Tor} (A,G)$ is studied. A complete characterization is obtained when $G$ is separable.## References

- Doyle O. Cutler and Paul F. Dubois,
*Generalized final rank for arbitrary limit ordinals*, Pacific J. Math.**37**(1971), 345β351. MR**302783** - Paul C. Eklof,
*On singular compactness*, Algebra Universalis**14**(1982), no.Β 3, 310β316. MR**654400**, DOI 10.1007/BF02483935 - LΓ‘szlΓ³ Fuchs,
*Infinite abelian groups. Vol. II*, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR**0349869** - L. Fuchs and J. M. Irwin,
*On $p^{\omega +1}$-projective $p$-groups*, Proc. London Math. Soc. (3)**30**(1975), part 4, 459β470. MR**374288**, DOI 10.1112/plms/s3-30.4.459 - Phillip A. Griffith,
*Infinite abelian group theory*, University of Chicago Press, Chicago, Ill.-London, 1970. MR**0289638** - Paul Hill,
*The balance of Tor*, Math. Z.**182**(1983), no.Β 2, 179β188. MR**689295**, DOI 10.1007/BF01175620 - Paul Hill,
*On the structure of abelian $p$-groups*, Trans. Amer. Math. Soc.**288**(1985), no.Β 2, 505β525. MR**776390**, DOI 10.1090/S0002-9947-1985-0776390-3 - J. Irwin, T. Snabb, and R. Cellars,
*The torsion product of totally projective $p$-groups*, Comment. Math. Univ. St. Paul.**29**(1980), no.Β 1, 1β5. MR**586242** - Patrick Keef,
*On the Tor functor and some classes of abelian groups*, Pacific J. Math.**132**(1988), no.Β 1, 63β84. MR**929583**
β, - R. J. Nunke,
*Purity and subfunctors of the identity*, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962) Scott, Foresman & Co., Chicago, Ill., 1963, pp.Β 121β171. MR**0169913** - R. J. Nunke,
*On the structure of $\textrm {Tor}$*, Proc. Colloq. Abelian Groups (Tihany, 1963) AkadΓ©miai KiadΓ³, Budapest, 1964, pp.Β 115β124. MR**0169912** - R. J. Nunke,
*On the structure of $\textrm {Tor}$. II*, Pacific J. Math.**22**(1967), 453β464. MR**214659** - R. B. Warfield Jr.,
*A classification theorem for abelian $p$-groups*, Trans. Amer. Math. Soc.**210**(1975), 149β168. MR**372071**, DOI 10.1090/S0002-9947-1975-0372071-2 - Brian D. Wick,
*The calculation of an invariant for $\textrm {Tor}$*, Pacific J. Math.**112**(1984), no.Β 2, 445β450. MR**743996**

*On iterated torsion products of abelian*$p$

*-groups*, Rocky Mountain J. Math. (to appear). β, $S$

*-groups*, $A$

*-groups and the*Tor

*functor*, Comment. Math., Univ. St. Paul (to appear).

## Bibliographic Information

- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**110**(1990), 27-37 - MSC: Primary 20K10; Secondary 20K40
- DOI: https://doi.org/10.1090/S0002-9939-1990-1030735-5
- MathSciNet review: 1030735