On $2$-step solvable groups of finite Morley rank
HTML articles powered by AMS MathViewer
- by Kathryn Enochs and Ali Nesin
- Proc. Amer. Math. Soc. 110 (1990), 479-489
- DOI: https://doi.org/10.1090/S0002-9939-1990-0984788-0
- PDF | Request permission
Abstract:
We prove the following results: Theorem 1. Let $G$ be a connected, centerless, solvable group of class 2 and of finite Morley rank. Then we can interpret in $G$ finitely many connected, solvable of class 2 and centerless algebraic groups ${\tilde G_1}, \ldots ,{\tilde G_n}$ over algebraically closed fields ${K_i}$ in such a way that $G$ interpretably imbeds in $\tilde G = {\tilde G_1} \oplus \cdots \oplus {\tilde G_n}$. Furthermore, $G’ = (\tilde G)’$. Let $F(G)$ denote the Fitting subgroup of $G$. Theorem 2. Let $G,\tilde G,{\tilde G_i}$ be as in Theorem 1. Then (i) $F(G) = F(\tilde G) \cap G$. (ii) $F(G)$ has a complement $V$ in $G:G = F \rtimes V$. (iii) Elements of $F(G)$ are unipotent elements of $G$ in $\tilde G$. (iv) If the characteristic of each base field ${K_i}$ of ${\tilde G_i}$ is different from 0, then $V$ is definable and its elements are semi-simple in $\tilde G$.References
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- Gregory Cherlin, Groups of small Morley rank, Ann. Math. Logic 17 (1979), no. 1-2, 1–28. MR 552414, DOI 10.1016/0003-4843(79)90019-6
- Gregory L. Cherlin and Joachim Reineke, Categoricity and stability of commutative rings, Ann. Math. Logic 9 (1976), no. 4, 367–399. MR 480007, DOI 10.1016/0003-4843(76)90017-6
- I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54–106. MR 16094, DOI 10.1090/S0002-9947-1946-0016094-3 K. Enochs and A. Nesin, A note on complete local rings, preprint.
- Nathan Jacobson, Basic algebra. II, W. H. Freeman and Co., San Francisco, Calif., 1980. MR 571884 —, Structure of rings, Amer. Math. Soc. Colloquium Publications, vol. XXXVII, 1964.
- Irving Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954. MR 0065561
- Angus Macintyre, On $\omega _{1}$-categorical theories of abelian groups, Fund. Math. 70 (1971), no. 3, 253–270. MR 289280, DOI 10.4064/fm-70-3-253-270 —, On ${\omega _1}$-categorical theories of fields, Fund. Math. 71 (1971), 1-25.
- Ali Nesin, On solvable groups of finite Morley rank, Trans. Amer. Math. Soc. 321 (1990), no. 2, 659–690. MR 968420, DOI 10.1090/S0002-9947-1990-0968420-2 —, Non-associative rings of finite Morley rank, Model Theory of Groups, Notre Dame Mathematical Lecture Series (A. Nesin and A. Pillay, eds.), 1979.
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
- T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR 632835 E. Witt, Zyklische Körper und Algebren der Charakteristik $p$, J. Reine Angew. Math. 176, 126-140.
- B. I. Zil′ber, Some model theory of simple algebraic groups over algebraically closed fields, Colloq. Math. 48 (1984), no. 2, 173–180. MR 758524, DOI 10.4064/cm-48-2-173-180
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 479-489
- MSC: Primary 03C45; Secondary 03C60, 20F16
- DOI: https://doi.org/10.1090/S0002-9939-1990-0984788-0
- MathSciNet review: 984788