The group of measure preserving transformations of the unit interval is an absolute retract
HTML articles powered by AMS MathViewer
- by Nguyen To Nhu
- Proc. Amer. Math. Soc. 110 (1990), 515-522
- DOI: https://doi.org/10.1090/S0002-9939-1990-1009997-6
- PDF | Request permission
Abstract:
The group of measure preserving transformations of the unit interval equipped with the weak topology is an absolute retract, hence is homeomorphic to a separable Hilbert space.References
- Tadeusz Dobrowolski, Examples of topological groups homeomorphic to $l^f_2$, Proc. Amer. Math. Soc. 98 (1986), no. 2, 303–311. MR 854038, DOI 10.1090/S0002-9939-1986-0854038-3
- Paul R. Halmos, Lectures on ergodic theory, Publications of the Mathematical Society of Japan, vol. 3, Mathematical Society of Japan, Tokyo, 1956. MR 0097489
- Michael Keane, Contractibility of the automorphism group of a nonatomic measure space, Proc. Amer. Math. Soc. 26 (1970), 420–422. MR 265555, DOI 10.1090/S0002-9939-1970-0265555-X
- Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), no. 3, 243–254. MR 774515, DOI 10.4064/fm-124-3-243-254
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 515-522
- MSC: Primary 28D15; Secondary 54C55, 58D07
- DOI: https://doi.org/10.1090/S0002-9939-1990-1009997-6
- MathSciNet review: 1009997