Univalence of Gaussian and confluent hypergeometric functions
HTML articles powered by AMS MathViewer
- by Sanford S. Miller and Petru T. Mocanu
- Proc. Amer. Math. Soc. 110 (1990), 333-342
- DOI: https://doi.org/10.1090/S0002-9939-1990-1017006-8
- PDF | Request permission
Abstract:
Conditions are determined for the univalence convexity and starlikeness of Gaussian and confluent hypergeometric functions. In addition, subordination results are obtained for these classes of functions.References
- B. C. Carlson and Dorothy B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no.ย 4, 737โ745. MR 747433, DOI 10.1137/0515057
- Louis de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no.ย 1-2, 137โ152. MR 772434, DOI 10.1007/BF02392821
- Erwin Kreyszig and John Todd, The radius of univalence of the error function, Numer. Math. 1 (1959), 78โ89. MR 101918, DOI 10.1007/BF01386375
- Erwin Kreyszig and John Todd, On the radius of univalence of the function $\textrm {exp}\,z^{2}\,\int _{0}^{z}\,\textrm {exp} (-t^{2})dt$, Pacific J. Math. 9 (1959), 123โ127. MR 107032
- Erwin Kreyszig and John Todd, The radius of univalence of Bessel functions. I, Illinois J. Math. 4 (1960), 143โ149. MR 110827
- E. P. Merkes and W. T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc. 12 (1961), 885โ888. MR 143950, DOI 10.1090/S0002-9939-1961-0143950-1
- Sanford S. Miller and Petru T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differential Equations 67 (1987), no.ย 2, 199โ211. MR 879693, DOI 10.1016/0022-0396(87)90146-X
- St. Ruscheweyh and V. Singh, On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl. 113 (1986), no.ย 1, 1โ11. MR 826655, DOI 10.1016/0022-247X(86)90329-X
- Giovanni Sansone and Johan Gerretsen, Lectures on the theory of functions of a complex variable. II: Geometric theory, Wolters-Noordhoff Publishing, Groningen, 1969. MR 0259072
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 333-342
- MSC: Primary 33A30; Secondary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1990-1017006-8
- MathSciNet review: 1017006