The influence of a small cardinal on the product of a Lindelöf space and the irrationals
HTML articles powered by AMS MathViewer
- by L. Brian Lawrence PDF
- Proc. Amer. Math. Soc. 110 (1990), 535-542 Request permission
Abstract:
It is unknown whether there is in ZFC a Lindelöf space whose product with the irrationals is nonnormal. We give some necessary conditions based on the minimum cardinality of $a{ \leq ^*}$ unbounded family in ${}^\omega \omega$.References
- K. Alster, The product of a Lindelöf space with the space of irrationals under Martin’s axiom, Proc. Amer. Math. Soc. 110 (1990), no. 2, 543–547. MR 993736, DOI 10.1090/S0002-9939-1990-0993736-9
- A. S. Besicovitch, Concentrated and rarified sets of points, Acta Math. 62 (1933), no. 1, 289–300. MR 1555386, DOI 10.1007/BF02393607
- D. K. Burke and S. W. Davis, Subsets of $^{\omega }\omega$ and generalized metric spaces, Pacific J. Math. 110 (1984), no. 2, 273–281. MR 726486, DOI 10.2140/pjm.1984.110.273
- Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna, Tom 47. [Mathematics Library. Vol. 47]. MR 0500779
- Stephen H. Hechler, On the existence of certain cofinal subsets of $^{\omega }\omega$, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1974, pp. 155–173. MR 0360266
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619 L. B. Lawrence, Lindelöf spaces concentrated on Bernstein subsets of the real line (to appear).
- E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375–376. MR 152985, DOI 10.1090/S0002-9904-1963-10931-3
- Ernest A. Michael, Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compositio Math. 23 (1971), 199–214. MR 287502
- John C. Oxtoby, Measure and category, 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980. A survey of the analogies between topological and measure spaces. MR 584443, DOI 10.1007/978-1-4684-9339-9
- Mary Ellen Rudin, Countable paracompactness and Souslin’s problem, Canadian J. Math. 7 (1955), 543–547. MR 73155, DOI 10.4153/CJM-1955-058-8 —, A normal space $X$ for which $X \times I$ is not normal, Fund. Math. 73 (1971), 179-186.
- Mary Ellen Rudin and Michael Starbird, Products with a metric factor, General Topology and Appl. 5 (1975), no. 3, 235–248. MR 380709, DOI 10.1016/0016-660X(75)90023-9
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 535-542
- MSC: Primary 54B10; Secondary 03E35, 54D20
- DOI: https://doi.org/10.1090/S0002-9939-1990-1021211-4
- MathSciNet review: 1021211