The construction of global attractors
HTML articles powered by AMS MathViewer
- by Marcy Barge and Joe Martin
- Proc. Amer. Math. Soc. 110 (1990), 523-525
- DOI: https://doi.org/10.1090/S0002-9939-1990-1023342-1
- PDF | Request permission
Abstract:
The purpose of this note is to show that every inverse limit space of an interval mapping can be realized as a global attractor for a homeomorphism of the plane.References
- Marcy Barge and Joe Martin, Chaos, periodicity, and snakelike continua, Trans. Amer. Math. Soc. 289 (1985), no. 1, 355–365. MR 779069, DOI 10.1090/S0002-9947-1985-0779069-7
- Marcy Barge and Joe Martin, Dense orbits on the interval, Michigan Math. J. 34 (1987), no. 1, 3–11. MR 873014, DOI 10.1307/mmj/1029003477
- Marcy Barge and Joe Martin, Dense periodicity on the interval, Proc. Amer. Math. Soc. 94 (1985), no. 4, 731–735. MR 792293, DOI 10.1090/S0002-9939-1985-0792293-8
- R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653–663. MR 43450
- Morton Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478–483. MR 115157, DOI 10.1090/S0002-9939-1960-0115157-4
- William Thomas Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math. 103 (1982), no. 2, 589–601. MR 705252
- R. F. Williams, One-dimensional non-wandering sets, Topology 6 (1967), 473–487. MR 217808, DOI 10.1016/0040-9383(67)90005-5
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 523-525
- MSC: Primary 58F12; Secondary 54F20, 54H20
- DOI: https://doi.org/10.1090/S0002-9939-1990-1023342-1
- MathSciNet review: 1023342