Projectivity of the Whitehead product in spheres
HTML articles powered by AMS MathViewer
- by Wên Hsiung Lin
- Proc. Amer. Math. Soc. 110 (1990), 527-534
- DOI: https://doi.org/10.1090/S0002-9939-1990-1023352-4
- PDF | Request permission
Abstract:
The Whitehead square $\left [ {{l_{{2^i} - 1}},{l_{{2^i} - 1}}} \right ] \in {\pi _{{2^{i + 1}} - 3}}({S^{{2^i} - 1}})$ is shown to be projective for $i \leq 10$.References
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20–104. MR 141119, DOI 10.2307/1970147 —, Operations of the $n$th kind in $K$-theory and what we don’t know about $\mathbb {R}{p^\infty }$, London Math. Soc. Lecture Note Ser., no. 11, Cambridge University, 1974, pp. 1-11.
- M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291–310. MR 131880, DOI 10.1112/plms/s3-11.1.291
- M. G. Barratt, J. D. S. Jones, and M. E. Mahowald, The Kervaire invariant problem, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 9–22. MR 711039, DOI 10.1090/conm/019/711039 A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G Quillen, D. L. Rector, and J. W. Shlessinger, The $\bmod - p$ lower central series and the Adams spectral sequence. II, Topology 9 (1970), 309-316.
- Edgar H. Brown and Ralph L. Cohen, The Adams spectral sequence of $\Omega ^2S^3$ and Brown-Gitler spectra, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 101–125. MR 921474
- Edgar H. Brown Jr. and Samuel Gitler, A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra, Topology 12 (1973), 283–295. MR 391071, DOI 10.1016/0040-9383(73)90014-1
- E. H. Brown Jr. and F. P. Peterson, On the stable decomposition of $\Omega ^{2}S^{r+2}$, Trans. Amer. Math. Soc. 243 (1978), 287–298. MR 500933, DOI 10.1090/S0002-9947-1978-0500933-4
- È. Kh. Braun Jr. and F. P. Peterson, The Brown-Gitler spectrum, the space $\Omega ^{2}S^{3}$ and the elements $\eta _{j}\in \Pi _{2^{j}}$, Trudy Mat. Inst. Steklov. 154 (1983), 38–43 (Russian). Topology (Moscow, 1979). MR 733824
- F. R. Cohen, M. E. Mahowald, and R. J. Milgram, The stable decomposition for the double loop space of a sphere, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 225–228. MR 520543
- Donald M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 235–236. MR 328934, DOI 10.1090/S0002-9939-1974-0328934-1
- Donald M. Davis and Mark Mahowald, Classification of the stable homotopy types of stunted real projective spaces, Pacific J. Math. 125 (1986), no. 2, 335–345. MR 863530
- Stanley O. Kochman, Stable homotopy groups of spheres, Lecture Notes in Mathematics, vol. 1423, Springer-Verlag, Berlin, 1990. A computer-assisted approach. MR 1052407, DOI 10.1007/BFb0083795
- Mark Mahowald, A new infinite family in ${}_{2}\pi _{*}{}^s$, Topology 16 (1977), no. 3, 249–256. MR 445498, DOI 10.1016/0040-9383(77)90005-2
- Mark Mahowald and Martin Tangora, Some differentials in the Adams spectral sequence, Topology 6 (1967), 349–369. MR 214072, DOI 10.1016/0040-9383(67)90023-7
- R. James Milgram and Peter Zvengrowski, Even Whitehead squares are not projective, Canadian J. Math. 29 (1977), no. 5, 957–962. MR 448348, DOI 10.4153/CJM-1977-096-9
- R. James Milgram, J. Strutt, and P. Zvengrowski, Projective stable stems of spheres, Bol. Soc. Mat. Mexicana (2) 22 (1977), no. 2, 48–57. MR 526797
- Duane Randall, Projectivity of the Whitehead square, Proc. Amer. Math. Soc. 40 (1973), 609–611. MR 356047, DOI 10.1090/S0002-9939-1973-0356047-0
- V. P. Snaith, A stable decomposition of $\Omega ^{n}S^{n}X$, J. London Math. Soc. (2) 7 (1974), 577–583. MR 339155, DOI 10.1112/jlms/s2-7.4.577
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217
- J. H. C. Whitehead, On the groups $\pi _r(V_{n,m})$ and sphere-bundles, Proc. London Math. Soc. (2) 48 (1944), 243–291. MR 12226, DOI 10.1112/plms/s2-48.1.243
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 527-534
- MSC: Primary 55Q15; Secondary 55P40, 55Q40
- DOI: https://doi.org/10.1090/S0002-9939-1990-1023352-4
- MathSciNet review: 1023352