Isometric immersions with congruent Gauss maps
HTML articles powered by AMS MathViewer
- by John Douglas Moore and Maria Helena Noronha
- Proc. Amer. Math. Soc. 110 (1990), 463-469
- DOI: https://doi.org/10.1090/S0002-9939-1990-1023353-6
- PDF | Request permission
Abstract:
A characterization of pairs of isometric immersions which have congruent Gauss maps is given.References
- Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
- Eugenio Calabi, Isometric imbedding of complex manifolds, Ann. of Math. (2) 58 (1953), 1–23. MR 57000, DOI 10.2307/1969817
- Marcos Dajczer and Detlef Gromoll, Gauss parametrizations and rigidity aspects of submanifolds, J. Differential Geom. 22 (1985), no. 1, 1–12. MR 826420
- Marcos Dajczer and Lucio Rodríguez, Rigidity of real Kaehler submanifolds, Duke Math. J. 53 (1986), no. 1, 211–220. MR 835806, DOI 10.1215/S0012-7094-86-05314-7
- Manfredo P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. Translated from the Portuguese. MR 0394451 S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. 1, Wiley, New York, 1963. H. B. Lawson, Lectures on minimal submanifolds, Publish or Perish, Berkeley, CA, 1980.
- John Douglas Moore, Isometric immersions of riemannian products, J. Differential Geometry 5 (1971), 159–168. MR 307128
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 463-469
- MSC: Primary 53C42
- DOI: https://doi.org/10.1090/S0002-9939-1990-1023353-6
- MathSciNet review: 1023353