On ranges of polynomials in finite matrix rings
HTML articles powered by AMS MathViewer
- by Chen-Lian Chuang
- Proc. Amer. Math. Soc. 110 (1990), 293-302
- DOI: https://doi.org/10.1090/S0002-9939-1990-1027090-3
- PDF | Request permission
Abstract:
Let $C$ be a finite field and let ${C_m}$ denote the ring consisting of all $m \times m$ matrices over $C$. By a polynomial, we mean a polynomial in noncommuting indeterminates with coefficients in $C$. It is shown here that a subset $A$ of ${C_m}$ is the range of a polynomial without constant term if and only if $0 \in A$ and $uA{u^{ - 1}} \subseteq A$ for all invertible elements $u \in {C_m}$.References
- J. V. Brawley and L. Carlitz, A characterization of the $n\times n$ matrices over a finite field, Amer. Math. Monthly 80 (1973), 670–672. MR 316499, DOI 10.2307/2319170
- C.-L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math. 59 (1987), no. 1, 98–106. MR 923664, DOI 10.1007/BF02779669
- Bernardo Felzenszwalb and Antonino Giambruno, Periodic and nil polynomials in rings, Canad. Math. Bull. 23 (1980), no. 4, 473–476. MR 602605, DOI 10.4153/CMB-1980-072-5
- Irving Kaplansky, “Problems in the theory of rings” revisited, Amer. Math. Monthly 77 (1970), 445–454. MR 258865, DOI 10.2307/2317376
- V. N. Latyšev and A. L. Šmel′kin, A certain problem of Kaplansky, Algebra i Logika 8 (1969), 447–448 (Russian). MR 0272754
- Uri Leron, Nil and power-central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97–103. MR 354764, DOI 10.1090/S0002-9947-1975-0354764-6
- Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 293-302
- MSC: Primary 16A38; Secondary 16A42, 16A44
- DOI: https://doi.org/10.1090/S0002-9939-1990-1027090-3
- MathSciNet review: 1027090