An isomorphism theorem for commutative modular group algebras
HTML articles powered by AMS MathViewer
- by William Ullery
- Proc. Amer. Math. Soc. 110 (1990), 287-292
- DOI: https://doi.org/10.1090/S0002-9939-1990-1031452-8
- PDF | Request permission
Abstract:
For each positive integer $n$ and limit ordinal $\mu$, a new class of abelian $p$-groups, called ${A_n}(\mu )$-groups, are introduced. These groups are shown to be uniquely determined up to isomorphism by numerical invariants which include, but are not restricted to, their Ulm-Kaplansky invariants. As an application of this uniqueness theorem, we prove an isomorphism result for group algebras: Let $H$ be an ${A_n}(\mu )$-group and $F$ a field of characteristic $p$. It is shown that if $K$ is a group such that the group algebras FH and FK are $F$-isomorphic, then $H$ and $K$ are isomorphic.References
- S. D. Berman, Group algebras of countable abelian $p$-groups, Publ. Math. Debrecen 14 (1967), 365โ405 (Russian). MR 225897, DOI 10.5486/pmd.1967.14.1-4.40
- S. D. Berman and T. ลฝ. Mollov, The group rings of abelian $p$-groups of arbitrary power, Mat. Zametki 6 (1969), 381โ392 (Russian). MR 254155
- Lรกszlรณ Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- Paul Hill, On the structure of abelian $p$-groups, Trans. Amer. Math. Soc. 288 (1985), no.ย 2, 505โ525. MR 776390, DOI 10.1090/S0002-9947-1985-0776390-3
- Paul Hill and Charles Megibben, On the theory and classification of abelian $p$-groups, Math. Z. 190 (1985), no.ย 1, 17โ38. MR 793345, DOI 10.1007/BF01159160
- Warren May, Commutative group algebras, Trans. Amer. Math. Soc. 136 (1969), 139โ149. MR 233903, DOI 10.1090/S0002-9947-1969-0233903-9
- Warren May, Modular group algebras of totally projective $p$-primary groups, Proc. Amer. Math. Soc. 76 (1979), no.ย 1, 31โ34. MR 534384, DOI 10.1090/S0002-9939-1979-0534384-X
- Warren May, Modular group algebras of simply presented abelian groups, Proc. Amer. Math. Soc. 104 (1988), no.ย 2, 403โ409. MR 962805, DOI 10.1090/S0002-9939-1988-0962805-2
- William Ullery, Modular group algebras of $N$-groups, Proc. Amer. Math. Soc. 103 (1988), no.ย 4, 1053โ1057. MR 954982, DOI 10.1090/S0002-9939-1988-0954982-4 โ, Modular group algebras of isotype subgroups of totally projective $p$-groups, Comm. Algebra (to appear).
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 287-292
- MSC: Primary 20K10
- DOI: https://doi.org/10.1090/S0002-9939-1990-1031452-8
- MathSciNet review: 1031452