$L(X,C(K))$ as a dual space
HTML articles powered by AMS MathViewer
- by T. S. S. R. K. Rao
- Proc. Amer. Math. Soc. 110 (1990), 727-729
- DOI: https://doi.org/10.1090/S0002-9939-1990-1023355-X
- PDF | Request permission
Abstract:
We exhibit a class of Banach spaces $X$, with ${X^*}$ having nontrivial centralizer for which the space of operators $L(X,C(K))$ is a dual space implies that $K$ is hyperstonian.References
- Ehrhard Behrends, $M$-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, vol. 736, Springer, Berlin, 1979. MR 547509, DOI 10.1007/BFb0063153
- Ehrhard Behrends, On the geometry of spaces of $C_0K$-valued operators, Studia Math. 90 (1988), no. 2, 135–151. MR 954168, DOI 10.4064/sm-90-2-135-151
- Michael Cambern and Peter Greim, Uniqueness of preduals for spaces of continuous vector functions, Canad. Math. Bull. 32 (1989), no. 1, 98–104. MR 996129, DOI 10.4153/CMB-1989-014-0
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279, DOI 10.1007/978-3-642-65762-7
- Daniel Li, Espaces $L$-facteurs de leurs biduaux: bonne disposition, meilleure approximation et propriété de Radon-Nikodým, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 229–243 (French, with English summary). MR 891618, DOI 10.1093/qmath/38.2.229
- Asvald Lima, Intersection properties of balls in spaces of compact operators, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, v, 35–65. MR 511813
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 727-729
- MSC: Primary 47D15; Secondary 46A32, 46B10
- DOI: https://doi.org/10.1090/S0002-9939-1990-1023355-X
- MathSciNet review: 1023355