NOTES ON RENEWAL SYSTEMS

SUSAN WILLIAMS

(Communicated by R. Daniel Mauldin)

Abstract. A renewal system is a symbolic dynamical system generated by free concatenations of a finite set of words. Renewal systems are sofic, but not every sofic shift is topologically conjugate to a renewal system.

For background on symbolic dynamical systems and sofic shifts see, for example, [M] or [BMT]. Let A be a finite alphabet. A subshift R of A^Z is called a renewal system if there is a finite set W of finite strings (words) over A such that each element of R can be obtained as an infinite bilateral concatenation of elements of W. This term is due to Roy Adler, whom I thank for suggesting this area of study. The set W^* of finite concatenations of words of W is extensively studied in automata theory, but the dynamical properties of renewal systems are in general not well understood.

It is easy to see that every renewal system is sofic. A subshift S of A^Z is sofic if and only if its language (the set of words appearing in elements of S) is regular [W]; the language of R is the set of subwords of W^*, which is regular. Alternatively, let the words of W be $a_1^{(i)} \ldots a_k^{(i)}, i = 1, \ldots, k$ and let $x_j^{(i)}, i = 1, \ldots, k, j = 1, \ldots, l_i$ be distinct symbols. The renewal system x generated by the words $x_1^{(i)} \ldots x_k^{(i)}, i = 1, \ldots, k$ is a shift of finite type of a special sort we call a loop system because of the appearance of the associated directed graph (Figure 1). R is the image of x under the 1-block map $x_j^{(i)} \rightarrow a_j^{(i)}$ and hence is sofic.

It is also easy to see that not every sofic shift, or even every shift of finite type, is a renewal system. For example, the finite type shift Σ given by the directed graph in Figure 2 (here we take the vertices rather than the edges as the alphabet of our shift) is not a renewal system. A generating set would have to contain words of the form a^m, b^n to produce the sequences a^∞, b^∞ (here powers denote concatenation); but the word $b^n a^m$ may not appear in Σ. However, Σ is topologically conjugate to a renewal system: the 1-block map $a \rightarrow a, b \rightarrow b$,

Received by the editors September 12, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 54H20; Secondary 28D05, 68Q45.

The author gratefully acknowledges the support of the IBM T. J. Watson Research Center and the National Science Foundation (Grant DMS-8704642).
$c \rightarrow b$ has a 2-block inverse, and the image of Σ is the renewal system generated by \{a, bb, bbb\}.

The main result of this paper is that not every sofic shift is topologically conjugate to a renewal system. The example given is not exotic: similar arguments will apply to many sofic shifts. But it is not known if every irreducible shift of finite type is conjugate to a renewal system. (For recent work in this direction see [GLS].)

Example. The sofic shift S given by the labeled directed graph in Figure 3 is not conjugate to a renewal system.

Proof. Suppose S is conjugate to a renewal system R. Let the conjugacy φ and its inverse be given by block codes with memory and anticipation n, which we will also denote by φ and φ^{-1}. Thus $(\varphi(x))_0 = \varphi(x_{-n} \ldots x_n)$ for $(x_i) \in S$. The image of the fixed point a^∞ in S is a fixed point \hat{a}^∞ in R, so $\varphi(a^m) = \hat{a}^{m-2n}$ for $m > 2n$, and $\varphi(a^m b a^m)$ has the form $\hat{a}^{m-2n} b_n \hat{a}^{m-2n}$. Since the point $a^\infty b a^\infty$ in S is the unique preimage of $\hat{a}^\infty b_n \hat{a}^\infty$ (where for definiteness we may take these points to have zero coordinate b, b_0 respectively), we must have $\varphi^{-1}(a^k b_{-n} \ldots b_n \hat{a}^k) = a^k b a^k$ for $k \geq 0$.

Now, the generating set W of R must contain the word \hat{a}' for some $r \geq 1$. Also, some concatenation of words in W must have the form $\hat{a}^s b_{-n} \ldots b_n \hat{a}^t$, $s, t \geq 0$, or it would be impossible to produce the sequence $\hat{a}^\infty b_{-n} \ldots b_n \hat{a}^\infty$.

Figure 1

Figure 2

Figure 3
So, \(R \) must contain a point

\[
x = \hat{a}^\infty b_{-n} \cdots b_n \hat{a}^m b_{-n} \cdots b_n \hat{a}^\infty
\]

with \(m \geq 2n \). But then

\[
\varphi^{-1}(x) = \hat{a}^\infty b a^{m+2n} b a^\infty,
\]

which is not a point in \(S \). \(\square \)

Note added in proof. Renewal systems are called finitely generated systems by A. Restivo [R], who shows it is decidable when a sofic shift is itself a renewal system.

References

University of South Alabama, Department of Mathematics and Statistics, Mobile, Alabama, 36688

E-mail address: f0dm@usouthal.bitnet