Notes on renewal systems
HTML articles powered by AMS MathViewer
- by Susan Williams
- Proc. Amer. Math. Soc. 110 (1990), 851-853
- DOI: https://doi.org/10.1090/S0002-9939-1990-1025283-2
- PDF | Request permission
Abstract:
A renewal system is a symbolic dynamical system generated by free concatenations of a finite set of words. Renewal systems are sofic, but not every sofic shift is topologically conjugate to a renewal system.References
- Mike Boyle, Brian Marcus, and Paul Trow, Resolving maps and the dimension group for shifts of finite type, Mem. Amer. Math. Soc. 70 (1987), no. 377, vi+146. MR 912638, DOI 10.1090/memo/0377
- Jacob Goldberger, Douglas Lind, and Meir Smorodinsky, The entropies of renewal systems, Israel J. Math. 75 (1991), no. 1, 49–64. MR 1147290, DOI 10.1007/BF02787181
- Brian Marcus, Sofic systems and encoding data, IEEE Trans. Inform. Theory 31 (1985), no. 3, 366–377. MR 794434, DOI 10.1109/TIT.1985.1057037
- Antonio Restivo, Finitely generated sofic systems, Theoret. Comput. Sci. 65 (1989), no. 2, 265–270. MR 1020492, DOI 10.1016/0304-3975(89)90049-2
- Benjamin Weiss, Subshifts of finite type and sofic systems, Monatsh. Math. 77 (1973), 462–474. MR 340556, DOI 10.1007/BF01295322
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 851-853
- MSC: Primary 54H20; Secondary 28D05, 94A15
- DOI: https://doi.org/10.1090/S0002-9939-1990-1025283-2
- MathSciNet review: 1025283