Derivatives of Hardy functions
HTML articles powered by AMS MathViewer
- by Boo Rim Choe
- Proc. Amer. Math. Soc. 110 (1990), 781-787
- DOI: https://doi.org/10.1090/S0002-9939-1990-1028041-8
- PDF | Request permission
Abstract:
Let $B$ be the open unit ball of ${C^n}$, and set $S = \partial B$. It is shown that if $\varphi \in {L^p}\left ( S \right ),\varphi > 0$, is a lower semicontinuous function on $S$ and $1/q > 1 + 1/p$, then, for a given $\varepsilon > 0$, there exists a function $f \in {H^p}\left ( B \right )$ with $f\left ( 0 \right ) = 0$ such that $\left | {{f^ * }} \right | = \varphi$ almost everywhere on $S$ and $\int _B {{{\left | {\nabla f} \right |}^q}dV < \varepsilon }$ where $V$ denotes the normalized volume measure on $B$.References
- A. B. Aleksandrov, The existence of inner functions in a ball, Mat. Sb. (N.S.) 118(160) (1982), no.Β 2, 147β163, 287 (Russian). MR 658785
- E. Bedford and B. A. Taylor, Two applications of a nonlinear integral formula to analytic functions, Indiana Univ. Math. J. 29 (1980), no.Β 3, 463β465. MR 570694, DOI 10.1512/iumj.1980.29.29034
- Boo Rim Choe, Projections, the weighted Bergman spaces, and the Bloch space, Proc. Amer. Math. Soc. 108 (1990), no.Β 1, 127β136. MR 991692, DOI 10.1090/S0002-9939-1990-0991692-0
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Walter Rudin, Inner functions in the unit ball of $\textbf {C}^{n}$, J. Functional Analysis 50 (1983), no.Β 1, 100β126. MR 690001, DOI 10.1016/0022-1236(83)90062-9
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 781-787
- MSC: Primary 32A35
- DOI: https://doi.org/10.1090/S0002-9939-1990-1028041-8
- MathSciNet review: 1028041