Homological dimensions in a Morita context with applications to subidealizers and fixed rings
HTML articles powered by AMS MathViewer
- by Philippe Loustaunau and Jay Shapiro
- Proc. Amer. Math. Soc. 110 (1990), 601-610
- DOI: https://doi.org/10.1090/S0002-9939-1990-1033958-4
- PDF | Request permission
Abstract:
Given a Morita context $(R,S,V,W,\theta ,\psi )$, we investigate the relationship between the various homological dimensions of the rings $R$ and $S$. We then apply these results to two particular examples: subidealizers and fixed rings.References
- Miriam Cohen, A Morita context related to finite automorphism groups of rings, Pacific J. Math. 98 (1982), no. 1, 37–54. MR 644936
- Carl Faith, Algebra: rings, modules and categories. I, Die Grundlehren der mathematischen Wissenschaften, Band 190, Springer-Verlag, New York-Heidelberg, 1973. MR 0366960
- K. R. Goodearl, Subrings of idealizer rings, J. Algebra 33 (1975), 405–429. MR 357510, DOI 10.1016/0021-8693(75)90110-6
- Friedhelm Hansen, Ringerweiterung und Lokalisation, Comm. Algebra 7 (1979), no. 7, 689–751 (German). MR 529317, DOI 10.1080/00927877908822371
- S. Jøndrup, When is the ring a projective module over the fixed point ring?, Comm. Algebra 16 (1988), no. 10, 1971–1992. MR 956151, DOI 10.1080/00927878808823672 I. Kaplansky, Fields and rings, Chicago Lectures in Mathematics, Chicago, 1972.
- Ellen Kirkman and James Kuzmanovich, Global dimensions of a class of tiled orders, J. Algebra 127 (1989), no. 1, 57–72. MR 1029402, DOI 10.1016/0021-8693(89)90273-1
- Martin Lorenz, On the global dimension of fixed rings, Proc. Amer. Math. Soc. 106 (1989), no. 4, 923–932. MR 972235, DOI 10.1090/S0002-9939-1989-0972235-6
- P. Loustaunau and J. Shapiro, Localization in a Morita context with applications to fixed rings, J. Algebra 143 (1991), no. 2, 373–387. MR 1132577, DOI 10.1016/0021-8693(91)90270-I
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 538169
- J. C. Robson and L. W. Small, Another change of rings theorem, Bull. London Math. Soc. 20 (1988), no. 4, 297–301. MR 940280, DOI 10.1112/blms/20.4.297
- Problems, Module theory (Proc. Special Session, Amer. Math. Soc., Univ. Washington, Seattle, Wash., 1977) Lecture Notes in Math., vol. 700, Springer, Berlin, 1979, pp. 215–239. MR 550437
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 601-610
- MSC: Primary 16D90; Secondary 16E10, 16W20
- DOI: https://doi.org/10.1090/S0002-9939-1990-1033958-4
- MathSciNet review: 1033958