On the distance between normal matrices
HTML articles powered by AMS MathViewer
- by Matjaž Omladič and Peter Šemrl
- Proc. Amer. Math. Soc. 110 (1990), 591-596
- DOI: https://doi.org/10.1090/S0002-9939-1990-1039535-3
- PDF | Request permission
Abstract:
The least upper bound for the norm distance between two normal matrices is given in terms of their eigenvalues exclusively, thus solving a problem which appears to be long open.References
- T. Ando and R. Bhatia, Eigenvalue inequalities associated with the Cartesian decomposition, Linear and Multilinear Algebra 22 (1987), no. 2, 133–147. MR 936567, DOI 10.1080/03081088708817828
- Rajendra Bhatia, Analysis of spectral variation and some inequalities, Trans. Amer. Math. Soc. 272 (1982), no. 1, 323–331. MR 656492, DOI 10.1090/S0002-9947-1982-0656492-X —, Perturbation bounds for matrix eigenvalues, Pitman Res. Notes Math., vol. 162, 1987.
- Rajendra Bhatia and Chandler Davis, A bound for the spectral variation of a unitary operator, Linear and Multilinear Algebra 15 (1984), no. 1, 71–76. MR 731677, DOI 10.1080/03081088408817578
- Rajendra Bhatia, Chandler Davis, and Paul Koosis, An extremal problem in Fourier analysis with applications to operator theory, J. Funct. Anal. 82 (1989), no. 1, 138–150. MR 976316, DOI 10.1016/0022-1236(89)90095-5
- Rajendra Bhatia, Chandler Davis, and Alan McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52/53 (1983), 45–67. MR 709344, DOI 10.1016/0024-3795(83)80007-X
- Rajendra Bhatia and John A. R. Holbrook, Short normal paths and spectral variation, Proc. Amer. Math. Soc. 94 (1985), no. 3, 377–382. MR 787876, DOI 10.1090/S0002-9939-1985-0787876-5
- Kenneth R. Davidson, Finite dimension problems in operator theory, The Gohberg anniversary collection, Vol. I (Calgary, AB, 1988) Oper. Theory Adv. Appl., vol. 40, Birkhäuser, Basel, 1989, pp. 187–201. MR 1038314
- A. J. Hoffman and H. W. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. J. 20 (1953), 37–39. MR 52379, DOI 10.1215/S0012-7094-53-02004-3
- V. S. Sunder, On permutations, convex hulls, and normal operators, Linear Algebra Appl. 48 (1982), 403–411. MR 683234, DOI 10.1016/0024-3795(82)90123-9
- V. S. Sunder, Distance between normal operators, Proc. Amer. Math. Soc. 84 (1982), no. 4, 483–484. MR 643734, DOI 10.1090/S0002-9939-1982-0643734-5
- Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479 (German). MR 1511670, DOI 10.1007/BF01456804
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 591-596
- MSC: Primary 15A42
- DOI: https://doi.org/10.1090/S0002-9939-1990-1039535-3
- MathSciNet review: 1039535