A RESULT ABOUT THE HILBERT TRANSFORM ALONG CURVES

LINDA V. SAAL

(Communicated by J. Marshall Ash)

Abstract. Let G be a connected and simply connected, nilpotent Lie group and let $\gamma: (-1, 1) \to G$ be a (connected) analytic curve such that $\gamma(0) = 0$. Then the Hilbert transform along γ,

$$Tf(x) = \text{p.v.} \int_{0<|t|<1} \frac{f(xy(t)^{-1})}{t} dt,$$

is bounded on $L^p(G)$, $1 < p < \infty$.

Introduction

Let G be a simply connected, nilpotent Lie group. From [Ch] we know that if γ is a homogeneous curve with respect to a group of dilations of G, $\gamma(0) = 0$, then the Hilbert transform along γ is a bounded operator on $L^p(G)$, for $1 < p < \infty$; moreover $Tf(x)$ exists a.e. for all $f \in L^p(G)$. In [RS2] singular integral operators whose kernels are homogeneous distributions of critical degree with mean value zero and supported on a homogeneous, analytic submanifold of G are considered.

The purpose of this note is to prove that if $\gamma: (-1, 1) \to G$ is a connected, analytic curve such that $\gamma(0) = 0$ then the

$$Tf(x) = \text{p.v.} \int_{0<|t|<1} \frac{f(xy(t)^{-1})}{t} dt,$$

is a bounded operator on $L^p(G)$, $1 < p < \infty$.

For the proof we first assume that a certain group of dilations associated to γ are automorphisms of G and also that γ generates G. We use the iteration argument of [Ch]. The general case follows from a transference theorem [RS2]. Finally the boundedness of the maximal operator

$$T^*f(x) = \sup_{r>0} \left| \int_{r<|t|<1} \frac{f(xy(t)^{-1})}{t} dt \right|$$

on $L^p(G)$, implies that $Tf(x)$ exists a.e. for all $f \in L^p$.
The proof of the theorem. Let \(G \) be a connected and simply connected, nilpotent Lie group. Let \(\gamma : (-1, 1) \to G \) be a (connected) analytic curve that generates \(G \) in the sense that \(\gamma \) is not contained in any proper closed subgroup of \(G \). Also assume that \(\gamma(0) \) is the identity of \(G \). Denote by \(\exp : \mathfrak{g} \to G \) the exponential map. First of all we remark the following facts:

(i) \(\gamma \) generates \(G \) if and only if \(\{ d^j \gamma/dt^j \}_{j \in \mathbb{N}} \) generate \(\mathfrak{g} \) as a Lie algebra, with \(\tilde{\gamma} = \gamma \circ \exp^{-1} \). Indeed, let \(\mathfrak{h} \) be the Lie subalgebra of \(\mathfrak{g} \) generated by \(\{ d^j \gamma/dt^j \}_{j=0} \) and \(H = \exp \mathfrak{h} \). Since \(\gamma \) is analytic, \(\tilde{\gamma} \subset \mathfrak{h} \).

(ii) We can choose a coordinate system on \(G \) such that

\[
\gamma(t) = \left(\frac{t^{a_1}}{a_1!} \varphi_1(t), \ldots, \frac{t^{a_k}}{a_k!} \varphi_k(t), 0, \ldots, 0 \right)
\]

with \(1 \leq a_1 < a_2 < \cdots < a_k \), \(\varphi_i \) are analytic functions and \(\varphi_i(0) = 1 \). Indeed, following [SW], we choose \(a_1 = \inf \{ j | d^j \gamma/dt^j \neq 0 \} \). Given \(a_1, \ldots, a_i \), define

\[
a_{i+1} = \inf \left\{ j | j > a_i \text{ and } \left\{ \frac{d^i \gamma}{dt^i} \Bigr|_{t=0}, \ldots, \left. \frac{d^j \gamma}{dt^j} \Bigr|_{t=0}, \frac{d^j \gamma}{dt^j} \Bigr|_{t=0} \right\} \right\}
\]

are linearly independent.

Define \(e_i = d^i \gamma/dt^i \Bigr|_{t=0} \). We thus obtain a set \(\{ e_1, \ldots, e_k \} \), \(k \leq n \), maximal with respect to be L.I. such that

\[
\tilde{\gamma}(t) = \left(\frac{t^{a_1}}{a_1!} \varphi_1(t) e_1 + \cdots + \frac{t^{a_k}}{a_k!} \varphi_k(t) e_k. \right)
\]

We extend \(\{ e_1, \ldots, e_k \} \) to a basis of \(\mathfrak{g} \), \(\{ e_1, \ldots, e_k, e_{k+1}, \ldots, e_n \} \). If \(A \) denotes the change of basis matrix, the coordinates of \(\gamma(t) \) with respect to \(\psi = \exp \circ A \) are \(((t^{a_1}/a_1!) \varphi_1(t), \ldots, (t^{a_k}/a_k!) \varphi_k(t), 0, \ldots, 0) \). From now on we fix this coordinate system on \(G \).

(iii) We now associate to \(\gamma \) a group of dilations \(D_r, \ r > 0 \), by

\[
D_r(x_1, \ldots, x_n) = (r^{a_1} x_1, \ldots, r^{a_k} x_k, r^{a_{k+1}} x_{k+1}, \ldots, r^{a_n} x_n),
\]

where \(a_1, \ldots, a_k \) are as in (ii) and \(a_{k+1}, \ldots, a_n \) are arbitrary integers. Let \(Q = a_1 + \cdots + a_n \).

(iv) Let \(\gamma_0 \) be the curve in \(G \) with coordinates

\[
(t^{a_1}/a_1!, \ldots, t^{a_k}/a_k!, 0, \ldots, 0).
\]

Then \(\gamma_0 \) is analytic, homogeneous with respect to \(D_r \) and generates \(G \). Indeed, if \(\gamma = \psi^{-1} \circ \gamma \) and \(\gamma_0 = \psi^{-1} \circ \gamma \), then \(d^i \gamma_0/dt^i \Bigr|_{t=0} = d^i \gamma/dt^i \Bigr|_{t=0} = e_i, \ 1 \leq i \leq k \).

We have associated to \(\gamma \) a group of dilations \(\{ D_r \}_{r>0} \) and a curve \(\gamma_0 \) that is homogeneous with respect to \(D_r \) and also generates \(G \). For the moment we also assume that \(\{ D_r \} \) are automorphisms of \(G \) and fix a homogeneous norm.
with respect to D_r, e.g., $|x| = \max_{1 \leq i \leq n} \{|x_i|^{1/a_i}\}$. Denote by \bar{B} the closure of the unit ball in \mathbb{R}^n.

Lemma 1. Let ϕ, ϕ_0 be the functions on \bar{B} defined by $\phi(t_1, \ldots, t_n) = \gamma(t_1) \cdots \gamma(t_n)$; $\phi_0(t_1, \ldots, t_n) = \gamma_0(t_1) \cdots \gamma_0(t_n)$. For each $j \in \mathbb{N}$, $j \geq 0$, define ϕ_j on $\{t \in \mathbb{R}^n : \frac{1}{2} \leq |t_j| \leq 1\}$ by $\phi_j(t) = D_2H(\phi(t^j))$. If $J_j(t) = \det d\phi_j(t)$ and $J_0(t) = \det d\phi_0(t)$, then $J_j(t) \to J_0(t)$ uniformly on $\{t \in \mathbb{R}^n : \frac{1}{2} \leq |t_j| \leq 1\}$.

Proof. Let $\phi_j(t) = \exp^{-1} \phi_j(t), \phi_0(t) = \exp^{-1} \phi_0(t)$.

$$\phi_j(t) = \exp^{-1}(D_2H(\phi(t^j))) = D_2H(\phi(t^j))$$

$$= D_2H(\phi(t^j) \cdots \phi(t_n)) = \sum_{j(k) \in \mathcal{J}} c_{j(k)}(t^j) \cdots c_{j(k)}(t_n).$$

Then

$$\phi_j(t) = \sum_{j(k) \in \mathcal{J}} c_{j(k)}(t^j) \cdots c_{j(k)}(t_n) + \phi_0(t).$$

If γ is homogeneous, $\phi_j(t) = \phi(t)$ and the first term of the right side of (*) is also independent of j. Thus either $P_j \equiv 0$ or $P_j(t_1, \ldots, t_n)$ is homogeneous of degree a_j, $j = 1, \ldots, n$,

$$P_j(t_1, \ldots, t_n) = \sum_{j(k) \in \mathcal{J}} c_{j(k)}(t^j) \cdots c_{j(k)}(t_n)$$

with $a_{j_1} + \cdots + a_{j_k} = a_j$, $b_{j_1} \cdots b_{j_k} = \mathfrak{C}$ and $F_{j_1}, \ldots, j_k(0) = 1$. Then

$$\phi_j(t) = \left(\sum_{i=1}^{n} \phi_i(2^{-j}t_i), \ldots \right)$$

By the mean value theorem applied to φ_i and F_{j_1}, \ldots, j_k, we have that

$$\phi_j(t) = \left(\sum_{i=1}^{n} \phi_i(2^{-j}t_i), \ldots \right)$$

with G_k bounded on $\{t_j \leq |t_j| \leq 1\}, k = 1, \ldots, n$. This proves the lemma since $\det d_x \exp = 1$.

Remark. (v) If γ is an analytic curve that generates G then $\phi : \mathbb{R} \to \mathbb{R}$ given by $\phi(t_1, \ldots, t_n) = \gamma(t_1) \cdots \gamma(t_n)$ has rank n almost everywhere. Indeed, since γ_0 is a homogeneous curve that generates G, $J_0 \neq 0$ [Ch]. Since γ_0 is analytic,
$J_0(t) \neq 0$ almost everywhere. Let $J(t) = \det \phi(t)$. Since $\phi_j(t) = D_{2j} \phi(2^{-j} t)$, $2^{j(Q-n)} J(2^{-j} t) = J_j(t) \to J_0(t)$ on $\{ t_1^{1/2} \leq |t_j| \leq 1 \}$. Then $J \neq 0$. (Furthermore $J(t) \neq 0$ almost everywhere).

By a result of [RS2] we know that if $\phi: \overline{B} \to \mathbb{R}^n$ is an analytic function having rank n at almost everywhere point and ψ is a C^1-function supported on \overline{B} then the transported measure by ϕ of $\psi(t) \, dt$ is absolutely continuous and its density ρ satisfies and L^1-Hölder condition $\int |\rho(x + y) - \rho(x)| \, dx \leq c\|y\|^{\delta}$, for some $\delta > 0$ depending on ϕ, $c > 0$ that depends also on ψ.

In the next lemma we say a little more about c.

Lemma 2. Let $J(t) = \det D\phi(t)$. Then

$$
\int |\rho(x + y) - \rho(x)| \, dx \leq \tilde{C}\|y\|^{\delta} \left(\int_B |\nabla \psi| + |\psi| \right)^\delta \left(\int_B |\psi|/2\delta/J(1 - \delta) \right)^{1-\delta},
$$

for some $\delta > 0$, $\tilde{C} > 0$, depending only on ϕ.

Proof. Following the proof of [RS2] we denote by Z the set of zeros of $J(t)$ and consider a covering $\{ B_j(z_j, r_j) \}$ of $\overline{B} - Z$, satisfying,

1. $r_j = c_0 |J(z_j)|$;
2. the balls $B^*_j = B(z_j, 2r_j)$ are disjoint from Z and have the bounded overlapping property; i.e. there is an integer N such that no point belongs to more than N of the B^*_j.

Let $\{ n_j \}$ be a smooth partition of unity on $\overline{B} - Z$ subordinated to $\{ B_j \}$ and such that $\|\nabla n_j\|_{\infty} \leq \tilde{C}r_j^{-1}$. Let $\psi_j = \psi n_j$ and let ρ_j be the transported measure by ϕ of ψ_j. Since $\phi^\prime|_{B_j}$ is invertible [RS2] $\rho_j(x) = |J\phi^\prime(x)|^{-1} \psi_j(\phi^\prime(x))$ and thus

$$
\int |\rho_j(x)| \, dx = \|\psi_j\|_1 = \int |\psi_j|
$$

and

$$
\int |\nabla \rho_j(x)| \, dx \\
\leq \tilde{C} \left(\int |\nabla \psi(t)|n_j(t)|J(t)|^{-1} \, dt + \int |\psi| |\nabla n_j| |J(t)|^{-1} \, dt + \int |J(t)|^{-2} |\psi| \, dt \right) \\
\leq \tilde{C}r_j^{-2} \left(\int_{B_j} |\nabla \psi| + \int_{B_j} |\psi| \right).
$$

This implies that if $0 < \delta \leq 1$,

$$
\int |\rho_j(x + y) - \rho_j(x)| \, dx \leq \tilde{C}\|y\|^{\delta} r_j^{-2\delta} \left(\int_{B_j} |\nabla \psi| + |\psi| \right)^\delta \left(\int_{B_j} |\psi| \right)^{1-\delta}.
$$
Now by Hölder's inequality
\[
\sum_j \left(\int_{B_j} |\nabla \psi| + |\psi| \right)^\delta r_j^{-2\delta} \left(\int_{B_j} |\psi| \right)^{1-\delta}
\leq \left(\sum_j \left(\int_{B_j} |\nabla \psi| + |\psi| \right) \right)^\delta \left(\sum_j r_j^{-2\delta/(1-\delta)} \int_{B_j} |\psi| \right)^{1-\delta}.
\]

The lemma follows from the fact that \(J |B^* \) is comparable with \(r_j \) and from the bounded overlapping property.

Theorem. Let \(\gamma \) be an analytic curve that generates \(G \) and such that the group of dilations associated to \(\gamma \) are automorphisms of \(G \). Then
\[
Tf(x) = p.v. \int_{0<|t|<1} f(x\gamma(t))^{-1} dt/t
\]
defines a bounded operator on \(L^p(G), 1 < p < \infty \).

Proof. (We follow [RS2] for the proof.) Denoted by \(\mu \) the distribution given by \(\mu(f) = p.v. \int_{0<|t|<1} f(\gamma(t)) dt/t \). Let \(\phi \) be in \(\mathcal{S}^\infty(1/2, 2) \) such that \(\sum_{j=0}^{\infty} \phi(2^j|t|) = 1 \). Let \(\varphi(x) = \varphi(|x|) \) where \(| \cdot | \) denote the homogeneous norm defined in Remark (iv). Let \(\mu_j = \phi(2^j|t|) \mu \).

Let \(\varphi_j(x) = 2^j \varphi(D_{2^j}x) \) and \(\eta_j = \frac{1}{c} (\varphi_{j+1} - \varphi_j) \) with \(c = \int \varphi \).

Since \(\{c^{-1}\varphi_j\} \) is an approximate identity in \(G \) we can write
\[
\delta = c^{-1} \lim_{j \to +\infty} \varphi_j = \sum_{j \geq j_0} \eta_j + c^{-1} \varphi_{j_0}
\]
for each \(j_0 \) fixed. Also \(\eta = \sum_{j \geq 0} \mu_j \). Then
\[
\mu = \delta \sum_j \mu_j = \sum_j \left(\sum_{k \geq j_0} \eta_k \ast \mu_j \right) + c^{-1} \sum_j \varphi_{j_0} \ast \mu_j.
\]
For each \(j \) fixed, take \(j_0 = j + 1 \). Then
\[
\mu = \sum_{k \geq 1} \left(\sum_{j \geq 0} \eta_{k+j} \ast \mu_j \right) + c^{-1} \sum_j (\varphi_{j+1} \ast \mu_j)
\]
\[
= \sum_{k \geq 1} M_k + N.
\]
If we prove
(1) For \(0 < \epsilon \leq 1 \), \(\|M_k\|_{p,p} \leq C_{\epsilon,p} 2^{\epsilon k} \), \(\|N\|_{p,p} \leq C \).
(2) \(\exists \sigma > 0 \) such that \(\|M_k\|_{2,2} \leq C 2^{-\sigma k} \).

Then the theorem follows by interpolation and duality. Indeed, fix \(1 < p < 2 \) and take \(1 < p_0 < p \). Then \(\frac{1}{p} = \frac{1}{2} s + (1-s) \frac{1}{p_0} \) for some \(0 < s < 1 \). Thus
\[\|M_k\|_{p,p} \leq C_{\epsilon} 2^{-\sigma k} 2^{(k(1-\epsilon))} \] for \(0 < \epsilon \leq 1 \) and some \(\sigma > 0 \). Choosing \(\epsilon \) small enough we obtain \(\sum_k \|M_k\|_{p,p} < +\infty \).

(1) We observe that \(M_k = \sum_{j \geq 0} \eta_{k+j} * \mu_j = \sum_{j \geq 0} f_j^k \) where \(f_j^k \) has the following properties

(a) \(f_j^k = 0 \),
(b) \(\int |f_j^k(xy) - f_j^k(x)| \, dx \leq C_2^{(k+j)\epsilon} |y|^{\epsilon} \),
(c) \(\sup f_j^k \subset \{x | |x| \leq C_2^{-l/1} \} \),
(d) \(\int |f_j^k| \leq C \).

Then Cotlar's lemma implies that \(\|M_k\|_{2,2} \leq C_2^{k} \) and the weak type (1.1) of \(M_k \) follows by checking that \(\int_{|x| \geq 2|y|} |M_k(xy) - M_k(x)| \, dx \leq C_2^{k}\epsilon \). The same argument holds for \(N \). For a proof see [ChNSW].

(2) By Cotlar's lemma it is enough to prove that for some \(\sigma > 0 \)

\[\|f_j^k * f_l^k\|_{2,2} \leq C_2^{-\sigma k} 2^{-l(j-l)\sigma} \]. We check this for \(j > l \), by using the iteration argument of [Ch].

\[
\|f_j^k * f_l^k\|_{2,2} \leq C_2 \| \eta_{k+j} * \mu_j * \mu_l^* \|_{2,2} \\
\leq C_2 \| \eta_{k+j} * \mu_j \|_{1/2} \| \mu_l^* * \mu_l * \eta_{k+j} \|_{1/2} \\
\leq \ldots \leq C_2 \| \eta_{k+j} * \mu_j \|_{1-2^{-\sigma} \| \mu_l^* * \mu_l * \eta_{k+j} \|_{2^{-\sigma}}}.
\]

Let \(\psi(t_1, \ldots, t_n) = \prod_{i=1}^n \frac{1}{t_i} \phi(2^i t_i) \) and \(\phi(t_1, \ldots, t_n) = \gamma(t_1) \cdots \gamma(t_n) \) as in Lemma 1.

Since \(\mu_1 * \cdots * \mu_j \) is the transported measure by \(\phi \) of \(\psi(t) \, dt \) and since \(\phi \) is analytic with rank \(n \) almost everywhere, \(\mu_1 * \cdots * \mu_j \) is absolutely continuous [RS2].

If \(\rho_l \) denotes its density, we have to prove that

\[\| \rho_l * \mu_j^* * \eta_{k+j} \|_{1} \leq C_2^{-\sigma k} 2^{-l(j-l)\sigma} \] for some \(\sigma > 0 \). (Recall that we have assumed \(l < j \).)

Let \(\tilde{\rho}_l(x) = 2^{-lQ} \rho_l(D_2 - l x) \). Then \(\tilde{\rho}_l \) is the transported measure by \(\phi_l(t) = D_2 \phi(2^{-l} t) \) of \(\tilde{\psi}(t) = 2^{-lQ} \psi_l(2^{-l} t) \) (sup \(\tilde{\psi} \subset \{ t | \frac{1}{2} \leq |t| \leq 2 \} \)).

If we prove that

(A) \[\int_{R^n} |\tilde{\rho}_l(xy) - \tilde{\rho}_l(x)| \, dx \leq C \| y \|^{\epsilon} \] for some \(C, \epsilon > 0 \), independent of \(l \)

then \(\int_{R^n} |\rho_l(xy) - \rho_l(x)| \, dx \leq C_2^{l/1} \| y \|^{\epsilon} \). From this and the fact that \(\eta_{k+j} \) has mean value zero and sop \(\eta_{k+j} \subset \{ x | |x| \leq C_2^{-(k+j)} \} \) we obtain the inequality desired.

But if \(\tilde{\rho}_l = \tilde{\rho}_l \circ \exp \) and \(\bar{\phi}_l = \exp^{-1} \circ \phi_l \) then \(\tilde{\rho}_l \) is the transported measure of \(\tilde{\psi}(t) \, dt \) by \(\bar{\phi}_l \) and (A) is equivalent to

(B) \[\int_{R^n} |\tilde{\rho}_l(x+y) - \tilde{\rho}_l(x)| \, dx \leq C \| y \|^{\delta}, \] \(C, \delta > 0 \), independent of \(l \) (see [RS2]).
Finally we prove (B). Since by Lemma 2,
\[\int_{\mathbb{R}^n} |\tilde{p}_f(x+y) - \tilde{p}_f(x)| \, dx \leq C \|y\|^\delta \left(\int |\nabla \tilde{\psi}| + |\tilde{\psi}| \right)^\delta \left(\int |\tilde{\psi}|/|J_\delta|^{2\delta/1-\delta} \right)^{1-\delta} \]
for some $0 < \delta < 1$, we only have to check that $\int_{\sup \tilde{\psi}} |J^{(l)}|^{-\alpha} \, dt \leq C$, with C independent of l, for some $0 < \alpha < 1$. By Lemma 1, $2^{l(Q-n)} J(2^{-l} t) = J(t)$ converges uniformly to $J_0(t)$, which is a homogeneous polynomial of degree $Q - n$. Thus if we develop $J(t)$ about 0 in the Taylor expansion, $J(t) = P(t) + R(t)$, where P is a homogeneous polynomial of degree $Q - n$ and $\frac{R(t)}{|t|^{Q-n}} \to 0$ as $|t| \to 0$. By a linear change of variables we can normalize P in the t_n-direction, i.e., $P(t) = t_n^{Q-n} + \sum_{j=0}^{Q-n-1} b_j(t_1, \ldots, t_{n-1}) t_n^j$ with $b_j(0) = 0$. The Weierstrass preparation theorem now implies that
\[J(t) = (t_1^{Q-n} + a_1(t') t_1^{Q-n-1} + \cdots + a_{Q-n}(t')) h(t), \quad t' = (t_1, \ldots, t_{n-1}), \]
where a_1, \ldots, a_{Q-n} and h are analytic functions in a neighborhood of 0, and $h(0) \neq 0$. (See [H].) Then
\begin{align*}
\int_{\sup \tilde{\psi}} |J^{(l)}(t)|^{-\alpha} \, dt &= 2^{-l(Q-n)\alpha} \int_{\sup \tilde{\psi}} |J(2^{-l} t)|^{-\alpha} \, dt \\
&\leq C 2^{-l(Q-n)\alpha} \int_{\frac{1}{2} \leq |t| \leq 2} 2^{l(n-Q)\alpha} |t_n^{Q-n} + 2^l a_1(t') t_n^{Q-n-1} + \cdots + 2^{l(Q-n)} a_{Q-n}(t')|^{-\alpha} \, dt \, dt' \\
&\leq CA_n \int_{1 \leq |t'| \leq 2} (1 + 2^l |a_1(t')| + \cdots + 2^{l(Q-n)} |a_{Q-n}(t')|)^{-\alpha} \, dt' \\
\end{align*}
which is bounded independent of l. The last inequality follows from [RS1] and the proof of the theorem is complete.

The general case where γ is any connected analytic curve in G, follows by transference [CW, RS2] as is shown in the following remarks.

Remark. (vi) Assume now that γ generates a proper subgroup of G. As in Remark (ii) we choose $\{e_1, \ldots, e_l\}$ that generate a Lie subalgebra \mathfrak{g} of \mathfrak{g}. Extend it to a basis $\{e_1, \ldots, e_l, \ldots, e_n\}$ of \mathfrak{g} and define for $r > 0$, $D_r(x_1, \ldots, x_l, \ldots, x_n) = (r^{a_1} x_1, \ldots, r^{a_l} x_l, \ldots, r^{a_n} x_n)$ where a_1, \ldots, a_l are determined by γ and a_{l+1}, \ldots, a_n are arbitrary integers. Assume that D_r are automorphisms of G, let γ_0 be the homogeneous curve (w.r.t. D_r) associated to γ, and let H be the subgroup of G generated by γ_0.

Then H is homogeneous with the dilations induced and γ generates H. By transference, $Tf = f \ast \mu$ is bounded on $L^p(G)$.

Remark. (vii) Let γ be an analytic curve that generates a connected and simply connected, nilpotent Lie Group N. Let D_r be a group of dilation associated to
\(\gamma \), which are not necessarily automorphisms of \(N \) and let \(\gamma_0 \) be as in Remark (ii). As in [RS2] let \(g \) be the step \(m \) free Lie algebra generated by \(n \), for \(m \) large enough and let \(G \) be the simply connected group with \(\mathcal{L}(G) = g \). Then there exists \(H \) a normal subgroup of \(G \) such that \(G/H \) is isomorphic to \(N \). Denote by \(\sigma : g \rightarrow n \) the quotient morphism. By construction of \(g \) the dilations \(D_n \) on \(n \) extend to automorphisms \(\tilde{D}_n \) of \(g \).

Let \(\tilde{\gamma} = \exp_n^{-1} \circ \gamma \), \(\tilde{\gamma} = \exp_G \circ \tilde{\gamma} \) and \(\tilde{\gamma}_0 = \exp_n^{-1} \circ \gamma_0 \), \(\tilde{\gamma}_0 = \exp_G \circ \gamma_0 \). Then \(\tilde{\gamma}_0 \) is a homogeneous curve w.r.t. \(\tilde{D}_n \) and the coordinates of \(\tilde{\gamma}_0 \) (resp. \(\tilde{\gamma} \)) with respect to \(\exp_G \) are those of \(\gamma_0 \) (resp. \(\gamma \)). Thus \(Tf = f \ast \mu \) is bounded on \(L^p(G) \), \(1 < p < \infty \) and by transference on \(L^p(N) \), \(1 < p < \infty \).

Remark. (viii) The maximal function along \(\gamma \),

\[
M_\gamma f(x) = \sup_{r \leq 1} \frac{1}{r} \left| \int_{0 \leq |t| \leq r} |f(x\gamma(t)^{-1})| \, dt \right|
\]

is bounded on \(L^p(G) \), \(1 < p \leq \infty \). Also

\[
T^* f(x) = \sup_r \left| \int_{r \leq |t| \leq 1} f(x\gamma(t)^{-1})dt/t \right|
\]

is bounded on \(L^p(G) \), \(1 < p < \infty \) and hence \(Tf(x) \) exists a.e. for all \(f \in L^p(G) \), \(1 < p < \infty \).

To see this we first remark that if \(Hf = \sup_j |f \ast f_j| \) with \(f_j \) satisfying

(i) \(\|f_j\|_1 \leq C_1 \),

(ii) \(f |f_j(xy) - f_j(x)| \leq C_2 j^j |y|^{\epsilon} \forall \epsilon > 0 \),

(iii) \(\sup f_j \subset \{|x| \leq C2^{-j}\} \).

Then \(H \) is bounded on \(L^\infty \) and of weak type \((1,1)\) with constant \(C_1 C_\epsilon \). Indeed, we can assume that \(f \geq 0 \). For \(\lambda > 0 \) we decompose \(f = g + b \) where \(\|g\|_\infty \leq \lambda \), \(b = \sum_j b_j \), \(\sup b_j \subset B_j = B(a_j, r_j) \), \(\int b_j = 0 \), \(\int |b_j| \leq A\lambda |B_j^*| \), and \(\sum |B_j^*| \leq \frac{2}{\epsilon} \|f\|_1 \), \(B_j^* = B(a_j, 2r_j) \). Then it is enough to estimate \(\{|x| \leq \lambda \} \). But

\[
\{x | Hb(x) > \lambda \} \subset \left(\bigcup_j B_j^* \right) \cup \left\{ x \in \left(\bigcup_j B_j^* \right) | Hb(x) > \lambda \right\}
\]
\[
\left\{ x \in \left(\bigcup B_j^* \right) \mid Hb(x) > \lambda \right\} \\
\leq \frac{1}{\lambda} \int_{\bigcup B_j^*} Hb(x) \leq \frac{1}{\lambda} \sum_i \int_{B_i^*} Hb_i(x) \\
= \frac{1}{\lambda} \sum_i \int_{B_i^*} \sup_j \left| \int_{B_i} b_j(y)f_j(y^{-1}x) \, dy \right| \, dx \\
= \frac{1}{\lambda} \sum_i \int_{B_i} \sup_j \left| \int_{B_i} b_j(y)(f_j(y^{-1}x) - f_j(a_i^{-1}x)) \, dy \right| \, dx \\
\leq \frac{1}{\lambda} \sum_i \int_{B_i} |b_i(y)| \sum_j \int_{c_B^*} |f_j(y^{-1}x) - f_j(a_i^{-1}x)| \, dx \, dy \\
\leq \frac{1}{\lambda} \sum_i \int_{B_i} |b_i(y)| \sum_j \int_{|z| > 2|y|} |f_j(y^{-1}z) - f_j(z)| \, dz \\
\leq C_\epsilon \cdot \frac{1}{\lambda} \sum_i \int_{B_i} |b_i(y)| \, dy \quad \text{by (ii) and (iii), } \hat{y} = y^{-1}a_i
\]

Now
\[
M_jf(x) \leq C \sup (f * |\mu_j|)(x)
\]
and
\[
\sup_j (f * |\mu_j|) \leq \sum_{k \geq 1} \sup_j |f * \eta_{k+j} * |\mu_j|| + \sup_j (f * \varphi_j * |\mu_j|) = \sum_k \tilde{M}_k + \tilde{N}.
\]

By the above \(\tilde{M}_k \) is bounded on \(L^\infty \) and for each \(\epsilon > 0 \) there exists a constant \(C_\epsilon \) such that \(\tilde{M}_k \) is of weak type \((1,1) \) with constant \(C_\epsilon 2^{k\epsilon} \). The same holds for \(\tilde{N} \). We also have that \(\|\tilde{M}_k\|_{2,2} \leq C_2^{-\sigma k} \) for some \(\sigma > 0 \), by using the technique of the square functions (see [Ch]). Indeed we have to check that the operators \(S_k f(x) = \sum_j a_j f * \eta_{k+j} * |\mu_j|, a_j = \pm 1 \forall j \), have \(L^2 \) boundedness \(C_2^{-\sigma k} \) but this follows as in the proof of the theorem since \(n \)-times \(|\mu_j| * \cdots * |\mu_j| \) is absolutely continuous.

The boundedness of \(T^* \) on \(L^p, 1 < p < \infty \), reduces to prove that the operators
\[
T_1 f(x) = \sup_{i \geq 0} \left| f * \sum_{j \geq i} \mu_j * \varphi_i \right|
\]
and
\[
T_2 f(x) = \sup_i \left| \sum_{j=0}^i f * \mu_j * (\delta - \varphi_i) \right|
\]
are bounded on \(L^p \) for \(1 < p < \infty \) (see [Ch]). \(T_1 f(x) \) is bounded pointwise by the maximal operator on \(G \) since the functions \(\psi_i = \sum_{j > i} \mu_j * \varphi_i \) satisfy \(\sup \psi_i \subset \{ x \mid |x| \leq C2^{-i} \} \) and \(|\psi_i(x)| \leq C2^i \sigma \).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now \(T_2 f(x) \leq \sum_k \sup_j |f \ast \mu_j \ast (\delta - \varphi_{k+j})| = \sum_k \widetilde{M}_k \) and \(\widetilde{M}_k f \leq M_k f + \sup_j |f \ast \mu_j \ast \varphi_{k+j}|. \) Since \(\sup_j |f \ast \mu_j \ast \varphi_{k+j}| \) is bounded on \(L^\infty \) and of weak type \((1,1)\), it is bounded on \(L^p \) for \(1 < p < \infty \) and so is \(\widetilde{M}_k \). To see that \(\|\widetilde{M}_k\|_{2,2} \leq C 2^{-\sigma k} \), for some \(C, \sigma > 0 \), we can argue as in the theorem since \(n\)-times \(\mu_j \ast \cdots \ast \mu_j \) is absolutely continuous with density \(\rho_j \) satisfying the equation \(\int |\rho_j(xy) - \rho_j(x)| \leq C2^{jC}|y|^\epsilon \) and \((\delta - \varphi_{k+j}) \) is a measure with bounded \(L^1 \)-norm, \(\text{supp} (\delta - \varphi_{k+j}) \subset \{ x ||x| \leq C2^{-j(k+j)} \} \) and it has mean value zero.

Acknowledgments

I am deeply indebted to Fulvio Ricci with whom I had the privilege to work at the Politecnico di Torino. He suggested this problem and I wish to express my gratitude for his generous help during its preparation.

Added in proof. I am very grateful to the referee for informing me of a recent preprint by M. Christ, A. Nagel, E. Stein, and S. Wainger [ChNSW] where more general results are presented, and from which our main theorem follows.

References

Fa. M.A.F., Valparaíso y Rogelio Martínez, Ciudad Universitaria 5000, Córdoba, Argentina