A nullset for normal functions in several variables
HTML articles powered by AMS MathViewer
- by Juhani Riihentaus
- Proc. Amer. Math. Soc. 110 (1990), 923-933
- DOI: https://doi.org/10.1090/S0002-9939-1990-1028048-0
- PDF | Request permission
Abstract:
Suppose that $\Omega$ is a domain in ${C^n},E \subset \Omega$ is closed in $\Omega$, and $f:\Omega \backslash E \to {C^ * }$ is a meromorphic function. We show that if $f$ is normal and $E$ is an analytic subvariety or, more generally, of locally finite $(2n - 2)$-dimensional Hausdorff measure in $\Omega$ satisfying a certain geometric condition, then $f$ can be extended to a meromorphic function (= holomorphic mapping) ${f^ * }:\Omega \to {C^ * }$. In the case of a subvariety sufficient, but not necessary, for the geometric condition is that the singularities of $E$ are normal crossings. As a digression, we give a new proof for the following result, due to Parreau in the case $n = 1$: if $f$ is in the Nevanlinna class and $E$ is polar (in ${R^{2n}}$), then $f$ has a meromorphic extension ${f^ * }$ to $\Omega$.References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743 C. Carathéodory, Theory of functions, vol. 2, Chelsea, New York, 1960.
- Urban Cegrell, Removable singularity sets for analytic functions having modulus with bounded Laplace mass, Proc. Amer. Math. Soc. 88 (1983), no. 2, 283–286. MR 695259, DOI 10.1090/S0002-9939-1983-0695259-X
- Joseph A. Cima and Ian R. Graham, On the extension of holomorphic functions with growth conditions across analytic subvarieties, Michigan Math. J. 28 (1981), no. 2, 241–256. MR 616273
- Joseph A. Cima and Ian Graham, Removable singularities for Bloch and BMO functions, Illinois J. Math. 27 (1983), no. 4, 691–703. MR 720102
- Joseph A. Cima and Steven G. Krantz, The Lindelöf principle and normal functions of several complex variables, Duke Math. J. 50 (1983), no. 1, 303–328. MR 700143, DOI 10.1215/S0012-7094-83-05014-7
- Roy O. Davies and Henryk Fast, Lebesgue density influences Hausdorff measure; large sets surface-like from many directions, Mathematika 25 (1978), no. 1, 116–119. MR 492190, DOI 10.1112/S0025579300009335 H. Federer, Geometric measure theory, Springer-Verlag, Berlin, 1969.
- Dennis A. Hejhal, Linear extremal problems for analytic functions, Acta Math. 128 (1972), no. 1-2, 91–122. MR 382625, DOI 10.1007/BF02392161 M. Hervé, Several complex variables, 2nd ed., Oxford University Press, New Delhi, 1987.
- Jaakko Hyvönen and Juhani Riihentaus, On the extension in the Hardy classes and in the Nevanlinna class, Bull. Soc. Math. France 112 (1984), no. 4, 469–480 (English, with French summary). MR 802536
- Jaakko Hyvönen and Juhani Riihentaus, Removable singularities for holomorphic functions with locally finite Riesz mass, J. London Math. Soc. (2) 35 (1987), no. 2, 296–302. MR 881518, DOI 10.1112/jlms/s2-35.2.296
- Pentti Järvi, An extension theorem for normal functions, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1171–1174. MR 955002, DOI 10.1090/S0002-9939-1988-0955002-8
- Peter Kiernan, Extensions of holomorphic maps, Trans. Amer. Math. Soc. 172 (1972), 347–355. MR 318519, DOI 10.1090/S0002-9947-1972-0318519-8
- Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65. MR 87746, DOI 10.1007/BF02392392
- Kiyoshi Noshiro, Cluster sets, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 28, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0133464
- M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble) 3 (1951), 103–197 (1952) (French). MR 50023
- Juhani Riihentaus, Removable singularities of analytic functions of several complex variables, Math. Z. 158 (1978), no. 1, 45–54. MR 484286, DOI 10.1007/BF01214564
- Juhani Riihentaus, Removable singularities in the Nevanlinna class and in the Hardy classes, Proc. Amer. Math. Soc. 102 (1988), no. 3, 546–550. MR 928977, DOI 10.1090/S0002-9939-1988-0928977-0
- Donald Sarason, Function theory on the unit circle, Virginia Polytechnic Institute and State University, Department of Mathematics, Blacksburg, Va., 1978. Notes for lectures given at a Conference at Virginia Polytechnic Institute and State University, Blacksburg, Va., June 19–23, 1978. MR 521811
- Bernard Shiffman, On the removal of singularities of analytic sets, Michigan Math. J. 15 (1968), 111–120. MR 224865 J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Springer-Verlag, Berlin, 1971. S. A. Vinogradov and V. P. Havin, Free interpolation in ${{\text {H}}^\infty }$ and in other certain classes of functions, I, J. Soviet Math. 9 (1978), 137-171.
- Shinji Yamashita, Functions of uniformly bounded characteristic on Riemann surfaces, Trans. Amer. Math. Soc. 288 (1985), no. 1, 395–412. MR 773067, DOI 10.1090/S0002-9947-1985-0773067-5
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 923-933
- MSC: Primary 32A17; Secondary 32D20
- DOI: https://doi.org/10.1090/S0002-9939-1990-1028048-0
- MathSciNet review: 1028048