ON CONTRACTIONS WITHOUT DISJOINT INVARIANT SUBSPACES

KATSUTOSHI TAKAHASHI

(Communicated by Paul S. Muhly)

Dedicated to Professor Shozo Koshi on his sixtieth birthday

Abstract. Assume T is a contraction with the following property: there exists an operator X with dense range such that $XT = WX$ where W is a bilateral shift. We give a necessary and sufficient condition that T has no disjoint invariant subspaces.

In [3] and [4], Olin and Thomson investigated subnormal operators without disjoint invariant subspaces. They called a (bounded linear) operator T on a Hilbert space cellular-indecomposable if the intersection of any two nonzero invariant subspaces of T is nonzero. In this note we extend the result for cellular-indecomposable subnormal contractions proved in [4].

Let T be a contraction on a separable Hilbert space H, and suppose that T is not of class C_0; that is, $\lim_{n \to \infty} \|T^n x\| \neq 0$ for some $x \in H$. It follows that there exist an isometry V and an operator X with dense range such that $XT = VX$ (see [5, Proposition II.3.5]). Kerchy [2] proved that if this V is a bilateral shift, then T has a nontrivial invariant subspace. (Note that if V is not unitary, then it can be replaced by a bilateral shift.)

Theorem. Let T be a contraction on H and assume that there exists an operator X with dense range such that $XT = WX$ where W is the bilateral shift on L^2. Then T is cellular-indecomposable if and only if there exists a quasiaffinity (i.e. an injection with dense range) Y such that $YT = SY$ where S is the unilateral shift on H^2.

The existence of the operator X in the theorem is equivalent to the condition that $\Theta_T(\zeta)^*$ is not isometric a.e. on the unit circle \mathbb{T} where Θ_T is the characteristic function of T (see [7]). If T is a contraction such that $YT = SY$ where Y is a quasiaffinity and S is the unilateral shift, then the restriction of T to any of its cyclic invariant subspaces is quasisimilar to S (see [1, Corollary 15]). Therefore our theorem extends the result of [4]. Such contractions were also considered in [8].

Received by the editors March 7, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 47A45.
Proof of theorem. Assume that there exists a quasiaffinity Y such that $YT = SY$. Let \mathcal{M}_1 and \mathcal{M}_2 be two nonzero invariant subspaces of T. For $i = 1, 2$, there exists an injection K_i such that $K_iS = TK_i$ and $\text{ran } K_i \subseteq \mathcal{M}_i$ (see [1, Lemma 3]). Since YK_i commutes with S, we have $YK_i = f_i(S)$ for a nonzero function $f_i \in H^\infty$. (For a contraction A whose unitary part is absolutely continuous or acts on the space $\{0\}$ and $f \in H^\infty$, $f(A)$ is an operator obtained by the Sz.-Nagy and Foias functional calculus [5]). It follows from the injectivity of Y that $Y(\mathcal{M}_1 \cap \mathcal{M}_2) = Y\mathcal{M}_1 \cap Y\mathcal{M}_2$. Therefore we have

$$Y(\mathcal{M}_1 \cap \mathcal{M}_2) \supseteq YK_1H^2 \cap YK_2H^2 = f_1H^2 \cap f_2H^2 \supseteq f_1f_2H^2 \neq \{0\},$$

and $\mathcal{M}_1 \cap \mathcal{M}_2 \neq \{0\}$.

Conversely, we assume that T is cellular-indecomposable. Obviously T is completely nonunitary. By the proof of the theorem in [7] (see [2] for a special case), it follows from the existence of the operator X that there are an operator Z and a vector x_0 satisfying the following conditions:

1. $ZT = WZ$ and
2. the function $\log |Zx_0|$ is integrable.

The condition (2) implies $Zx_0 = ug$ where $|u| = 1$ a.e. and g is an outer function in H^2, and so $W(Z\mathcal{M}_0)^-$ is a unilateral shift of multiplicity one where $\mathcal{M}_0 = \bigvee_{n \geq 0} T^n x_0$. Since $Z|\mathcal{M}_0$ is injective (see the proof of [1, Corollary 15]), $\ker Z \cap \mathcal{M}_0 = \{0\}$. Since the subspaces $\ker Z$ and \mathcal{M}_0 are invariant under T and T is cellular-indecomposable, it follows that $\ker Z = \{0\}$.

We claim that for every $x \in \mathcal{H}$, there exists a nonzero $f \in H^\infty$ such that $Zf(T)x \in (Z\mathcal{M}_0)^-$. For this purpose, take $x \in \mathcal{H}$ and let $\alpha = \{\zeta \in T: |(Zx)(\zeta)| \geq |(Zx_0)(\zeta)|\}$. Let us choose a function $h \in H^\infty$ such that $|h(\zeta)| = 1/2$ for $\zeta \in \alpha$ and $|h(\zeta)| = 2$ for $\zeta \in T\setminus\alpha$. Then on α we have

$$|Zx + hZx_0| \geq |Zx| - |h||Zx_0| \geq (1 - |h|)|Zx_0| = (1/2)|Zx_0|,$$

and on $T\setminus\alpha$ we have

$$|Zx + hZx_0| \geq |h||Zx_0| - |Zx| \geq (|h| - 1)|Zx_0| = |Zx_0|.$$

Thus $\log |Zx + hZx_0|$ is integrable, and so $Zx + hZx_0 = vk$ where $|v| = 1$ a.e. and k is outer. Then, setting $\mathcal{M} = \bigvee_{n \geq 0} T^n(x + h(T)x_0)$, we have

$$uH^2 \cap vH^2 \supseteq Z\mathcal{M}_0 \cap Z\mathcal{M} \supseteq Z(\mathcal{M}_0 \cap \mathcal{M}) \neq \{0\}$$

because T is cellular-indecomposable. Thus there exists a nonzero function $f \in H^\infty$ such that $ufv \in H^\infty$. Then we have

$$Zf(T)x = fZx = f(vk - hZx_0) = u(ufvk - hf) \in uH^2 = (Z\mathcal{M}_0)^-.$$

This establishes the claim.
Let \(\mathcal{N} = \{ x \in \mathcal{H} : Zx \in (Z\mathcal{M}_0)^- \} \), which is an invariant subspace of \(T \). Let \(T_1 = PT| \mathcal{H} \ominus \mathcal{N} \) where \(P \) is the orthogonal projection onto \(\mathcal{H} \ominus \mathcal{N} \). The claim given above implies that for every \(x \in \mathcal{H} \ominus \mathcal{N} \), there exists a nonzero function \(f \in H^\infty \) such that \(f(T_1)x = 0 \), and so \(T_1 \) is of class \(C_0 \) by [6]. That is, there exists an inner function \(q \) such that \(q(T_1) = 0 \). Then \(q(W)Z\mathcal{H} \subseteq (Z\mathcal{M}_0)^- \). Therefore \(W|(q(W)Z\mathcal{H})^- \) is unitarily equivalent to the unilateral shift \(S \). Since \(q(W)Z \) is injective, it follows that there is a quasiaffinity \(Y \) such that \(YT = SY \).

REFERENCES

6. ——, Local characterization of operators of class \(C_0 \), J. Funct. Anal. 8 (1971), 76–81.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE (GENERAL EDUCATION), HOKKAIDO UNIVERSITY, SAPPORO 060, JAPAN