Recurrent homeomorphisms on $\textbf {R}^ 2$ are periodic
HTML articles powered by AMS MathViewer
- by Lex G. Oversteegen and E. D. Tymchatyn
- Proc. Amer. Math. Soc. 110 (1990), 1083-1088
- DOI: https://doi.org/10.1090/S0002-9939-1990-1037216-3
- PDF | Request permission
Abstract:
A homeomorphism $f:(X,d) \to (X,d)$ of a metric space $(X,d)$ onto $X$ is recurrent provided that for each $\varepsilon > 0$ there exists a positive integer $n$ such that ${f^n}$ is $\varepsilon$-close to the identity map on $X$. The notion of a recurrent homeomorphism is weaker than that of an almost periodic homeomorphism. The result announced in the title generalizes the theorem of Brechner for almost periodic homeomorphisms and answers a question of R. D. Edwards.References
- Stephen A. Andrea, On homoeomorphisms of the plane which have no fixed points, Abh. Math. Sem. Univ. Hamburg 30 (1967), 61–74. MR 208588, DOI 10.1007/BF02993992
- Beverly L. Brechner, Almost periodic homeomorphisms of $E^{2}$ are periodic, Pacific J. Math. 59 (1975), no. 2, 367–374. MR 388361, DOI 10.2140/pjm.1975.59.367
- M. Brown, A note on Kister’s isotopy, Michigan Math. J. 14 (1967), 95–96. MR 214077, DOI 10.1307/mmj/1028999663
- Morton Brown, A new proof of Brouwer’s lemma on translation arcs, Houston J. Math. 10 (1984), no. 1, 35–41. MR 736573
- M. Brown and J. M. Kister, Invariance of complementary domains of a fixed point set, Proc. Amer. Math. Soc. 91 (1984), no. 3, 503–504. MR 744656, DOI 10.1090/S0002-9939-1984-0744656-3
- Haskell Cohen and Jack Hachigian, On iterates of continuous functions on a unit ball, Proc. Amer. Math. Soc. 18 (1967), 408–411. MR 211167, DOI 10.1090/S0002-9939-1967-0211167-3 S. Eilenberg, Sur les transformations périodiques de la surface de sphère, Fund. Math. 22 (1934), 28-41. R. Engelking, General topology, Polon. Sci. Publ., Warszawa, 1978.
- D. B. A. Epstein, Prime ends, Proc. London Math. Soc. (3) 42 (1981), no. 3, 385–414. MR 614728, DOI 10.1112/plms/s3-42.3.385
- W. H. Gottschalk, Minimal sets: an introduction to topological dynamics, Bull. Amer. Math. Soc. 64 (1958), 336–351. MR 100048, DOI 10.1090/S0002-9904-1958-10223-2
- Jack Hachigian, Homeomorphisms of the unit ball, Proc. Amer. Math. Soc. 19 (1968), 1293–1295. MR 232374, DOI 10.1090/S0002-9939-1968-0232374-0 —, Notices Amer. Math. Soc. 25 (1978), 252.
- Tatsuo Homma and Shin’ichi Kinoshita, On the regularity of homeomorphisms of $E^n$, J. Math. Soc. Japan 5 (1953), 365–371. MR 60811, DOI 10.2969/jmsj/00530365
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 1083-1088
- MSC: Primary 54H20
- DOI: https://doi.org/10.1090/S0002-9939-1990-1037216-3
- MathSciNet review: 1037216