A COMPARISON THEOREM FOR SELFADJOINT OPERATORS

AMIN BOUMENIR

(Communicated by Palle E. T. Jorgensen)

Abstract. In this work we shall establish a result concerning the spectral theory of differential operators. Let L_1 and L_2 be two self-adjoint operators acting in two different Hilbert spaces. Then under some conditions we shall prove that

$$(d\Gamma_1/d\Gamma_2)(L_2) = V V',$$

where $\Gamma_1(\lambda)$ and $\Gamma_2(\lambda)$ are the spectral functions associated with L_1 and L_2 respectively. V is the shift operator mapping the set of generalized eigenfunctions of L_1 into the set of generalized eigenfunctions of L_2, that is

$$y = V\varphi,$$

where $L_2y = \lambda y$ and $L_1\varphi = \lambda \varphi$.

1. Introduction

As we shall be manipulating eigenfunctions we need to recall the theory of operators in rigged Hilbert spaces. Let Φ be a nuclear space, N-space, that is a countably normed space $\Phi = \bigcap_{n>1} \Phi_n$, such that, for any p, there exists $n > p$ so that the embedding $\Phi_n \hookrightarrow \Phi_p$ is a Hilbert–Schmidt operator, (see [7]). We recall that an N-space is a perfect space, and so each bounded set is relatively compact.

We now come to some interesting applications of the above idea. Suppose that an operator L is symmetric in a Hilbert space H. Assume that there exists an N-space Φ (perfect) invariant under the operator L and such that H can be obtained as a completion of Φ under the inner product of H. We shall assume that the embedding $\Phi \hookrightarrow H$ is the identity. Since

$$\Phi \overset{L}{\hookrightarrow} \Phi,$$

we have

$$\Phi' \overset{L^*}{\hookrightarrow} \Phi'.$$

Then, using the symmetry of L, i.e., $L \subset L^*$, and the fact that

$$\Phi \hookrightarrow H \hookrightarrow \Phi',$$

Received by the editors October 27, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 46XXX.
we obtain that \(L^* = L \) on \(\Phi \), and \(L^* \) is seen as an extension of \(L \) to \(\Phi' \). Thus we shall agree to denote by \(L \) the operator \(L^* \), and so the definition:

Definition 1. We shall say that a linear functional \(\phi \in \Phi' \) is a generalized eigenfunction or eigenfunctional if

\[
L\phi = \lambda \phi \quad \text{in} \quad \Phi'.
\]

Below we recall a well known result, see [5, vol. 3].

Result. Let \(L \) be a symmetric linear operator which is defined on \(\Phi \) and maps \(\Phi \) into itself. Assume that \(\Phi \) is an \(N \)-space and that \(L \) admits a self-adjoint extension to the Hilbert space \(H \). Then \(L \) possesses a complete system of eigenfunctionals in the space \(\Phi' \).

Let \(L \) be a self-adjoint operator with simple spectrum acting in a separable Hilbert space \(H \). If \(\phi(\lambda) \) are the eigenfunctionals, that is \(L\phi(\lambda) = \lambda \phi(\lambda) \) in \(\Phi' \), then the associated isometry or \(\phi \)-Fourier transform is given by

\[
\hat{\phi}(\lambda) = (f, \phi(\lambda))_{\Phi'\times\Phi'} \quad \forall f \in \Phi
\]

and the inverse is

\[
f = \int \frac{\hat{\phi}(\lambda)}{\sqrt{\Gamma(\lambda)}} d\Gamma(\lambda) \in H.
\]

\(\Gamma(\lambda) \) is a nondecreasing function and is called the spectral function. The Parseval equality reads

\[
\forall f, \forall \psi \in \Phi \quad (f(x), \psi(x))_H = \int \hat{\phi}(\lambda)\overline{\hat{\psi}(\lambda)} d\Gamma(\lambda).
\]

Let us agree on some notations. Let \(L_1 \) and \(L_2 \) be two self-adjoint operators with simple spectrum and acting in two separable Hilbert spaces \(H_1 \) and \(H_2 \) respectively.

We assume the existence of two (perfect) \(N \)-spaces \(\Phi_1 \) and \(\Phi_2 \) such that

\[
\Phi_i \hookrightarrow \Phi_i', \quad i = 1, 2.
\]

In all that follows, \(\{ \Phi_i, H_i, \Phi_i' \} \) and \(\Gamma_i(\lambda) \) will denote, respectively, the rigged spaces and the spectral functions associated with the self-adjoint operator \(L_i \), where \(i = 1, 2 \). Denote by \(\phi(\lambda) \) and \(y(\lambda) \) the generalized eigenfunctionals defined by

\[
L_i\phi(\lambda) = \lambda \phi(\lambda) \quad \text{in} \quad \Phi_i'
\]

\[
L_2y(\lambda) = \lambda y(\lambda) \quad \text{in} \quad \Phi_2'.
\]

\(\sigma_i \) denotes the spectrum of \(L_i \), for \(i = 1, 2 \). The Fourier transform in this case is given by

\[
f \in \Phi_1 \quad \hat{f}^1(\lambda) \equiv (f, \phi(\lambda))_{\Phi_1 \times \Phi_1'},
\]

\[
\psi \in \Phi_2 \quad \hat{\psi}^2(\lambda) \equiv (\psi, y(\lambda))_{\Phi_2 \times \Phi_2'}.
\]
In order to compare operators, we shall need to establish a correspondence between the two sets of eigenfunctionals. Assume the existence of a one-to-one mapping between the real sets σ_1 and σ_2, namely,

$$T: \sigma_2 \rightarrow \sigma_1.$$

Definition 2. Let $\phi(\lambda)$ and $\psi(\lambda)$ be the eigenfunctionals defined by (1.1), and let $T: \sigma_2 \rightarrow \sigma_1$ be a one-to-one mapping. Then V is said to be a shift operator if

$$V \phi(T(\lambda)) = \psi(\lambda), \quad \forall \lambda \in \sigma_2.$$

Remark. It is clear that the shift operator V is a one-to-one mapping between the sets $\{\phi(\lambda)\}_{\sigma_1}$ and $\{\psi(\lambda)\}_{\sigma_2}$. Hence it is defined on $\{\phi(\lambda)\}_{\sigma_1}$, a subset of Φ'. We next extend V to the algebraic span of $\{\phi(\lambda)\}_{\sigma_1}$. For our immediate use, we shall only need the fact that V is densely defined. Indeed, from the reflexivity of Φ and the completeness of $\{\phi(\lambda)\}_{\sigma_1}$, the space spanned by $\{\phi(\lambda)\}_{\sigma_1}$ is dense in Φ'. Therefore V is densely defined. This enables us to define the adjoint operator V'. By definition we have

$$\langle \psi, Vf \rangle_{\Phi'_{2} \times \Phi'_{1}} = \langle V'\psi, f \rangle_{\Phi'_{2} \times \Phi'_{1}}.$$

Since the spaces are reflexive,

$$\langle \psi, Vf \rangle_{\Phi_2 \times \Phi_1} = \langle V'\psi, f \rangle_{\Phi_2 \times \Phi_1}.$$

The domain of V' is defined by

$$D_{V'} = \{ \psi \in \Phi_2 | f \rightarrow \langle \psi, Vf \rangle \text{ is continuous} \}.$$

However there is a simple connection between $D_{V'}$ and Φ_2, indeed, we have the well-known result that, for example see [6, Chapter 2],

$$V \text{ admits closure} \Leftrightarrow D_{V'} \text{ is dense in } \Phi_2.$$

2. The factorization theorem

Let us start with some notations. We know that V' acts between Φ_2 and Φ_1, which are imbedded in H_2 and H_1 respectively. Hence V' has a natural extension as an operator from H_2 into H_1, which we shall denote by \tilde{V}'. Thus

$$H_2 \overset{\tilde{V}'}{\rightarrow} H_1$$

and, for $f \in D_{V'}$, $\tilde{V}'f = V'f$ in H_1.

Define an operator G in Φ_2 by

$$Gf = \int \overline{\tilde{f}^2(\lambda)} y(\lambda) \, d\Gamma_1(T(\lambda)),$$

where $\Gamma_1(\lambda)$ is the spectral function of L_1, and $T(\cdot)$ is the mapping used in the definition of the shift operator. The domain of G is $D_{G} = \{ f \in \Phi_2 | Gf \in \Phi'_{2} \}$. Clearly if $\tilde{f}^2(\lambda)$ has a compact support then Gf is defined. It is possible to represent G if we knew the behaviour of $\Gamma_1(T(\lambda))$.

Theorem 3. Let L_1 and L_2 be two self-adjoint operators with simple spectrum, acting in the rigged Hilbert spaces $\Phi_1 \hookrightarrow H_1 \hookrightarrow \Phi'_1$ and $\Phi_2 \hookrightarrow H_2 \hookrightarrow \Phi'_2$ respectively. If the shift operator V admits closure, then

$$G = \overline{VV'},$$

where \overline{V} denotes the closure of V.

Proof. Let us give the diagram of the operator V

$$\begin{array}{c}
\Phi_1 \hookrightarrow H_1 \hookrightarrow \Phi'_1 \\
\downarrow V' \quad \downarrow V \\
\Phi_2 \hookrightarrow H_2 \hookrightarrow \Phi'_2
\end{array}$$

where $V\phi(T(\lambda)) = y(\lambda)$.

Let f and ψ be two arbitrary elements of $D_{V'}$.

$$f^2(\lambda) = \langle f, y(\lambda) \rangle_{\Phi_1 \times \Phi'_1}$$

(2.1)

$$= \langle f, V\phi(T(\lambda)) \rangle_{\Phi_1 \times \Phi'_1} = \langle V'f, \phi(T(\lambda)) \rangle_{\Phi_1 \times \Phi'_1} = \widehat{V'f}^1(T(\lambda))$$

and, similarly,

$$\psi^2(\lambda) = \widehat{V'\psi}^1(T(\lambda)).$$

(2.2)

Observing that the right-hand side of equations (2.1), (2.2) are the φ-Fourier transform of $V'f$ and $V'\psi$, respectively, we obtain by using the Parseval equality,

$$\int \overline{V'f}^1(\lambda)\overline{V'\psi}^1(\lambda) d\Gamma_1(\lambda) = \int f^2(\lambda)\overline{\psi^2(\lambda)} d\Gamma_1(\lambda).$$

(2.3)

Clearly,

$$\langle f, G\psi \rangle_{\Phi_1 \times \Phi'_1} = \left\langle f, \int \overline{\psi^2(\lambda)} y(\lambda) d\Gamma_1(\lambda) \right\rangle_{\Phi_1 \times \Phi'_1}$$

$$= \int \overline{\psi^2(\lambda)} f^2(\lambda) d\Gamma_1(\lambda).$$

Hence $(V'f, V'\psi)_{H_1} = \langle f, G\psi \rangle_{\Phi_1 \times \Phi'_1}$ which implies that $D_{V'} \subset D_G$. Since the imbedding $\Phi_1 \hookrightarrow H_1 \hookrightarrow \Phi'_1$ is the identity,

$$(V'f, V'\psi)_{H_1} = (V'f, V'\psi)_{\Phi_1 \times \Phi'_1}.$$

Therefore

$$\langle f, G\psi \rangle_{\Phi_1 \times \Phi'_1} = (V'f, V'\psi)_{\Phi_1 \times \Phi'_1},$$

and, since V admits closure, we have

$$(V'f, V'\psi)_{\Phi_1 \times \Phi'_1} = (f, \overline{V'\psi})_{\Phi_1 \times \Phi'_1},$$
and so $\langle f, G\psi \rangle_{\Phi_2 \times \Phi_2'} = \langle f, \overline{V'}\psi \rangle_{\Phi_2 \times \Phi_2'}$. Therefore for $\psi \in D_{V'}$, $G\psi = \overline{V'}\psi$ in Φ_2', and so $D_G = D_{\overline{V}'}$. □

Remark. We had to use the fact that V admitted closure. We shall see that we do not need such an assumption if we took \overline{V}' instead of V'. For that define

$$
\tilde{G} : H_2 \to H_2 \\
\tilde{G} f = \int \hat{f}^2(\lambda)\overline{\psi^2(\lambda)} d\Gamma_1(T(\lambda)),
$$

$D_{\tilde{G}} = \{ f \in H_2 | \tilde{G} f \in H_2 \}$. Here the Fourier transform is extended to H_2 by taking the closure of the Fourier transform in H_2. It is clear that $D_{\tilde{G}}$ is dense in H_2. To see that, take the dense set of smooth compactly supported functions in $L^2_{\Gamma_1(T(\lambda))}$. Then, using the inverse ψ-Fourier transform, we shall obtain a dense set in H_2, which is also contained in $D_{\tilde{G}}$. Hence $D_{\tilde{G}}$ is dense in H_2, and so \tilde{G} is densely defined. From (2.3),

$$
(V'f, V'\psi)_{H_1} = \int \hat{f}^2(\lambda)\overline{\psi^2(\lambda)} d\Gamma_1(T(\lambda)).
$$

Since f and ψ are also in H_2, $(V'f, V'\psi)_{H_1} = (\tilde{V}'f, \tilde{V}'\psi)_{H_1}$ and

$$
\int \hat{f}^2(\lambda)\overline{\psi^2(\lambda)} d\Gamma_1(T(\lambda)) = (f, \tilde{G}\psi)_{H_2}.
$$

Therefore

$$
(2.4) \quad (\tilde{V}'f, \tilde{V}'\psi)_{H_1} = (f, \tilde{G}\psi)_{H_2}.
$$

It is readily seen that \tilde{V}' is densely defined. Indeed, since

$$
\|\tilde{V}'f\|^2 = \int |\hat{f}^2(\lambda)|^2 d\Gamma_1(T(\lambda)),
$$

the argument used for $D_{\tilde{G}}$ will go through. \tilde{V}' densely defined means that the adjoint operator is well defined and, by (2.4), we deduce that

$$
(f, [\tilde{V}'\dagger] \tilde{V}'\psi)_{H_2} = (f, \tilde{G}\psi)_{H_2}.
$$

Therefore $\tilde{G} = [\tilde{V}'\dagger] \tilde{V}'$, and we have just proved

Theorem 4. Let L_1 and L_2 be two self-adjoint operators with simple spectrum, acting in the rigged Hilbert spaces $\Phi_1 \hookrightarrow H_1 \hookrightarrow \Phi_1'$ and $\Phi_2 \hookrightarrow H_2 \hookrightarrow \Phi_2'$, respectively. Then

$$
\tilde{G} = [\tilde{V}'\dagger] \tilde{V}'.
$$
There exists a particular case where it is possible to obtain a simple representation of the operator G. For that we need

Definition 5. $\Gamma_1(T(\lambda))$ is said to be absolutely continuous with respect to $\Gamma_2(\lambda)$ (denoted by $\text{ABS}-d\Gamma_2(\lambda)$) if there exists a $d\Gamma_2(\lambda)$-summable function $g(\lambda)$ such that

$$\Gamma_1(T(\lambda)) = \int_{-\infty}^{\lambda} g(\lambda) \, d\Gamma_2(\lambda).$$

(Notation: $g(\lambda) = (d\Gamma_1(T)/d\Gamma_2)(\lambda)$.)

Let $g(L_2)$ be the operator defined by

$$g(L_2) = \frac{d\Gamma_2(\lambda)}{\Gamma_1(T(\lambda))} f_2(X),$$

or

$$g(L_2)f(x) = \int g(\lambda)f^2(\lambda)\, y(\lambda) \, d\Gamma_2(\lambda).$$

Its domain is given by

$$D_{g(L_2)} = \{ f \in \Phi_2 \mid g(\lambda)f^2(\lambda) \in L^2 \}.$$

Therefore $Gf = I_{\Phi_2}g(L_2)f$, for any $f \in D_{g(L_2)}$, and where I_{Φ_2} is the imbedding from $H_2 \hookrightarrow \Phi_2$, the identity. So we can write, for any $f \in D_{g(L_2)}$,

$$Gf = g(L_2)f \quad \text{in } \Phi_2.'$$

In this way G is an extension of $g(L_2)$ to Φ_2'. We shall agree to write $G \equiv g(L_2)$ in Φ_2'. Thus

Corollary 6. Let L_1 and L_2 be two self-adjoint operators with simple spectrum, acting in the rigged Hilbert spaces $\Phi_1 \hookrightarrow H_1 \hookrightarrow \Phi_1'$ and $\Phi_2 \hookrightarrow H_2 \hookrightarrow \Phi_2'$, respectively. Assume that V admits closure. If the function $\Gamma_1(T(\lambda))$ is $\text{ABS}-d\Gamma_2(\lambda)$, i.e., $d\Gamma_1(T(\lambda)) = g(\lambda) \, d\Gamma_2(\lambda)$. Then, for any $f \in D_{g(L_2)}$,

$$g(L_2)f = \overline{V}V'f \quad \text{in } \Phi_2',$$

where \overline{V} denotes the closure of V.

If $\tilde{g}(L_2)$ denotes the extension of $g(L_2)$ to $H_2 \rightarrow H_2$, then $\tilde{g}(L_2) = \tilde{G}$ in H_2, and so from Theorem 4,

Corollary 7. Let L_1 and L_2 be two self-adjoint operators with simple spectrum, acting in the rigged Hilbert spaces $\Phi_1 \hookrightarrow H_1 \hookrightarrow \Phi_1'$ and $\Phi_2 \hookrightarrow H_2 \hookrightarrow \Phi_2'$, respectively. If the function $\Gamma_1(T(\lambda))$ is $\text{ABS}-d\Gamma_2(\lambda)$, i.e., $d\Gamma_1(T(\lambda)) = g(\lambda) \, d\Gamma_2(\lambda)$. Then

$$\tilde{g}(L_2) = [\tilde{V}']\tilde{V}'$$.

We have defined $g(L_2)$ through the Fourier transform and claimed that it was the usual function of the operator L_2. Let us briefly show that the two
definitions coincide. If \(E_\lambda \) is the spectral family associated with \(L_2 \), then since the operator \(L_2 \) has a simple spectrum,

\[
dE_\lambda f = \overline{\jmath^2(\lambda)} y(x, \lambda) d\Gamma_2(\lambda).
\]

Therefore

\[
g(L_2) f = \int g(\lambda) dE_\lambda f = \int g(\lambda) \overline{\jmath^2(\lambda)} y(x, \lambda) d\Gamma_2(\lambda),
\]

and so the two definitions are in fact identical.

3. General results

We have shown that \(g(L_2) = [\tilde{V}']' \tilde{V}' \) on \(D_{\nu'} \). Clearly the boundedness of \(g(L_2) \), which depends on the behaviour of \(g(\lambda) \), must be related to the boundedness of \(\tilde{V}' \).

Theorem 8. Assume that conditions in Corollary 7 hold; then \(\tilde{V}' \) is a bounded operator \(H_2 \rightarrow H_1 \) if and only if \(\sqrt{g(\lambda)} \) is bounded \(d\Gamma_2(\lambda) \) a.e.

Proof. Assume that \(\sqrt{g(\lambda)} \) is bounded \(d\Gamma_2(\lambda) \) a.e. Then there exists \(M \) such that \(|\sqrt{g(\lambda)}| \leq M d\Gamma_2(\lambda) \) a.e. From (2.4) we obtain

\[
\| \tilde{V}' f \|_{H_1} = \| \sqrt{g(\lambda)} \overline{\jmath^2(\lambda)} \|_{d\Gamma_2} \quad \text{for } f \in \Phi_2 \hookrightarrow H_2,
\]

but \(\| \sqrt{g(\lambda)} \overline{\jmath^2(\lambda)} \|_{d\Gamma_2} \leq M \| \overline{\jmath^2(\lambda)} \|_{d\Gamma_2} \leq M \| f \|_{H_2} \). Hence \(\| \tilde{V}' f \|_{H_1} \leq M \| f \|_{H_2} \), which shows that \(\tilde{V}' \) is a bounded operator from \(H_2 \) to \(H_1 \). Conversely, if \(\tilde{V}' \) is bounded then, for any \(f \in \Phi_2 \), we do have

\[
\| \sqrt{g(\lambda)} \overline{\jmath^2(\lambda)} \|_{d\Gamma_2} = \| \tilde{V}' f \|_{H_1} \leq M \| f \|_{H_2} \leq M \| \overline{\jmath^2(\lambda)} \|_{d\Gamma_2}.
\]

From the above inequality it is readily seen that \(\sqrt{g(\lambda)} \) is \(d\Gamma_2 \) bounded. \(\square \)

Theorem 9. \(\tilde{V}' : H_2 \rightarrow H_1 \) is invertible if and only if

\[
\int_{k_g} d\Gamma_2(\lambda) = 0,
\]

where \(k_g \equiv \{ \lambda | g(\lambda) = 0 \} \) and

\[
\| \tilde{V}' \| = \text{ess sup}_{\lambda \in \sigma_2} \sqrt{g(\lambda)}.
\]

From (2.4) we have that \(\| \tilde{V}' f \|_{H_1} = \| \sqrt{g(\lambda)} \overline{\jmath^2(\lambda)} \|_{d\Gamma_2} \). So the operator \(\tilde{V} : H_2 \rightarrow H_1 \) is invertible if and only if \(\sqrt{g(L_2)} \) is invertible. Thus we should have

\[
\sqrt{g(L_2)} f = 0 \Rightarrow f = 0.
\]

Using the Fourier transform,

\[
(3.1) \quad \sqrt{g(\lambda)} \overline{\jmath^2(\lambda)} = 0 \Rightarrow \overline{\jmath^2(\lambda)} = 0 \quad d\Gamma_2(\lambda) \text{ a.e.}
\]
As \(\| f^2 \| \) depends on the support of \(\Gamma_2 \), (3.1) will have to be verified only on the support of \(\Gamma_2 \), or, in other words, on \(\sigma_2 \). Thus (3.1) means that there is no set of nonzero measure, where \(g(\lambda) \) vanishes. \(\Box \)

Suppose that we need to find \(L_1 \) from its spectral function \(\Gamma_1 \), i.e., the inverse spectral problem. Let \(L_2 \) be given with its spectral function \(\Gamma_2 \), and form the operator \(G \). If we can solve \(G = V V' \), then we claim that the inverse spectral problem is solved. Indeed, if we regard the eigenfunctions as a basis for the differential operator then the result is immediate,

\[
L_2 y = \lambda y \quad \forall \lambda \in \sigma_2.
\]

So, by using the shift operator,

\[
y = V \varphi \quad \text{or} \quad \varphi = V^{-1} y
\]

\[
L_2 V \varphi = \lambda V \varphi,
\]

and clearly

\[
V^{-1} L_2 \varphi = \lambda \varphi
\]

so that

\[
L_1 = V^{-1} L_2 V \quad \text{in } \Phi_1',
\]

which is exactly the formula for the change of basis. From (3.2) we can see that we can recover \(L_1 \) if \(V^{-1} \) exists.

4. **The second factorization**

Notice that the function \(g(\lambda) \) in Definition 5 might not exist. In this section we shall give another way of relating the spectral functions. Let \(T \) be a non-decreasing one-to-one one mapping between \(\sigma_1 \) and \(\sigma_2 \). As usual the shift operator is defined by \(y(\lambda) = V \varphi(T(\lambda)) \). Since \(\Gamma_1(T(\lambda)) \) and \(\Gamma_2(\lambda) \) are non-decreasing functions we can assume the existence of an increasing function \(s(\lambda) \) such that

\[
\Gamma_1(T(s(\lambda))) = \Gamma_2(\lambda).
\]

With the help of \(s(\lambda) \) we can define the following operator:

\[
\Phi_2 \xrightarrow{A_s} H_2
\]

\[
\hat{f} \rightarrow A_s(\hat{f})
\]

\[
\tilde{2} \downarrow \quad 1 \downarrow 2^{-1}
\]

\[
\hat{f}^2(\lambda) \rightarrow \hat{f}^2(s(\lambda))
\]

The domain of \(A_s \) is \(D_{A_s} = \{ f \in \Phi_2 | \hat{f}^2(s(\lambda)) \in L_{\Gamma_2}^2 \} \). Clearly \(A_s = \hat{2}^{-1} s \hat{2} \), where \(s \circ \hat{2} \) denotes the composition with the function \(s(\lambda) \).

Denote by \(\tilde{A}_s \) the closure of \(A_s \) in \(H_2 \).
Theorem 10. Let L_1 and L_2 be two self-adjoint operators having their spectral functions such that $\Gamma_1(T(s(\lambda))) = \Gamma_2(\lambda)$. Then

\begin{equation}
[\tilde{V}' \tilde{V}]' = \tilde{A}_{T_5}^{-1} \tilde{A}_{T_5}.
\end{equation}

Proof. Let f and ψ be two elements of $D_{\tilde{V}'}$. As usual we shall work with the Fourier transform. By (2.3),

\begin{equation}
(V'f, \tilde{V}'\psi)_{H_1} = \int f^2(\lambda)\tilde{\psi}^2(\lambda) d\Gamma_1(T(\lambda))
\end{equation}

\begin{equation}
= \int f^2(T(s(\lambda)))\tilde{\psi}^2(T(s(\lambda))) d\Gamma_1(T(s(\lambda)))
\end{equation}

\begin{equation}
= \int \tilde{A}_{T_5} f^2(\lambda)\tilde{A}_{T_5}\tilde{\psi}^2(\lambda) d\Gamma_2(\lambda) = (\tilde{A}_{T_5}f, \tilde{A}_{T_5}\psi)_{H_2}.
\end{equation}

From (4.2), we deduce that $D_{\tilde{A}_{T_5}} = D_{\tilde{V}'}$, and \tilde{A}_{T_5} is densely defined in H_2, so

\begin{equation}
(f, [\tilde{V}' \tilde{V}]' \psi)_{H_1} = (f, \tilde{A}_{T_5}^2 \tilde{A}_{T_5}\psi(x))_{H_2}.
\end{equation}

Hence

\begin{equation}
[\tilde{V}' \tilde{V}]' = \tilde{A}_{T_5}^{-1} \tilde{A}_{T_5}.
\end{equation}

Let us illustrate the next idea by an example. Let $s(\lambda)$ be an increasing function and define

\begin{equation}
L_x = s(L_2).
\end{equation}

It is clear that $L_x \varphi(\lambda) = \lambda \varphi(\lambda)$, where $\varphi(\lambda) = y(s^{-1}(\lambda))$. Indeed

\begin{equation}
s(L_2)y(s^{-1}(\lambda)) = s(s^{-1}(\lambda))y(s^{-1}(\lambda)) = \lambda y(s^{-1}(\lambda)).
\end{equation}

Therefore

\begin{equation}
V'y(s^{-1}(\lambda)) = y(\lambda).
\end{equation}

For any $f \in D_{\tilde{V}'}$ we have

\begin{equation}
(f, y(\lambda))_{\Phi_2 \times \Phi_2} = (f, V'y(s^{-1}(\lambda)))_{\Phi_2 \times \Phi_2}
\end{equation}

\begin{equation}
= (V'f, y(s^{-1}(\lambda)))_{\Phi_1 \times \Phi_1},
\end{equation}

\begin{equation}
f^2(\lambda) = V'f^2(s^{-1}(\lambda)),
\end{equation}

or

\begin{equation}
f^2(s(\lambda)) = V'f^2(\lambda),
\end{equation}

and so, taking the inverse y-Fourier transform, for any $f \in D_{\tilde{V}'}$, $V'f = \tilde{A}_s f$ holds in H_2. In other words

\begin{equation}
\tilde{V}' f = \tilde{A}_s f.
\end{equation}
The spectral functions are

\[f = \int \int \overline{f^1(\lambda)} \varphi(\lambda) \, d\Gamma_1(\lambda) = \int \overline{f^2(s^{-1}(\lambda))} y(s^{-1}(\lambda)) \, d\Gamma_1(\lambda) \]

\[= \int \overline{f^2(\lambda)} y(\lambda) \, d\Gamma_1(s(\lambda)). \]

On the other hand,

\[f = \int \int \overline{f^2(\lambda)} y(\lambda) \, d\Gamma_2(\lambda). \]

Therefore

\[d\Gamma_1(s(\lambda)) = d\Gamma_2(\lambda). \]

Theorem 11. Let \(L_2 \) be a self-adjoint operator acting in the rigged Hilbert space \(\Phi_2 \hookrightarrow H_2 \hookrightarrow \Phi_2' \). If \(L_1 = s(L_2) \), where \(s \) is an increasing function, then

\[\Gamma_1(s(\lambda)) = \Gamma_2(\lambda) \quad \text{for any } f \in D_{\tilde{V}'}, \quad \tilde{V}' f = \tilde{A}_s f. \]

We now discuss the case where we are given two spectral functions, \(\Gamma_1(\lambda) \) and \(\Gamma_2(\lambda) \) such that \(\Gamma_1(s(\lambda)) = \Gamma_2(\lambda) \), where \(s(\lambda) \) is a one-to-one mapping \(\sigma_2 \to \sigma_1 \). The operators are not supposed to commute, and so they are not functions of each other.

\(\Gamma_1(s(\lambda)) \) is \(\text{ABS-}\text{d}\Gamma_2(\lambda) \) since \(g(\lambda) = (d\Gamma_1(s)/d\Gamma_2)(\lambda) = 1 \), and so \(\tilde{g}(L_2) = \text{Id} \) on \(D_{\tilde{g}(L_2)} \subset H_2 \to H_2 \). The shift operator is given by

\[V \varphi(s(\lambda)) = y(\lambda) \quad \text{for } \lambda \in \sigma_2. \]

From Corollary 4 we deduce that \(\tilde{g}(L_2) = [\tilde{V}']'\tilde{V}' \) or that \(\text{Id} = [\tilde{V}']'\tilde{V}' \). Hence \(\tilde{V}' \) is a unitary operator, in fact

\[(\tilde{V}' f, \tilde{V}' \psi)_{H_1} = (f, \psi)_{H_2}. \]

We can decompose \(V \) into two shifts:

\[\varphi(s(\lambda)) \xrightarrow{R} \varphi(\lambda) \xrightarrow{W} y(\lambda), \]

so \(V = W \cdot R \). By definition \(R \varphi(s(\lambda)) = \varphi(\lambda) \) or \(R \varphi(\lambda) = \varphi(s^{-1}(\lambda)) \). So, by Theorem 11, if \(\tilde{R}' \) is the closure of \(R' \) in \(H_1 \), \(\tilde{f}^1(s^{-1}(\lambda)) = \tilde{R}' f(\lambda) \Rightarrow \tilde{A}_s = \tilde{R}' \). Therefore

\[\text{Id} = [\tilde{V}']'\tilde{V}' = \tilde{W}'\tilde{R}'\tilde{W}' = [\tilde{W}']'(\tilde{A}_s - 1)'(\tilde{A}_s - 1)\tilde{W}'. \]

5. Examples

Example. As an example we shall show how to apply the above ideas and obtain an extension of the Gelfand Levitan theory to the generalized second order differential operator \(L_2 = -d^2/w(x) \, dx^2 \), where \(w(x) \geq 0 \). Suppose we are given two second order differential operators such that Theorem 4 holds:

\[L_1 = L_2 + q(x) \]
where
\begin{equation}
L_2 = -\frac{d^2}{w(x) \, dx^2},
\end{equation}

\(w(x) \geq 0\), and the boundary conditions are included in the definition of the operators. Notice that the operators \(L_1\) and \(L_2\) act in the same space \(L^2_{w(x) \, dx}(0, \infty)\). In what concerns the rigged Hilbert space structure we refer to the construction done by Aleksandriyan. Or, since the Fourier transform is defined, one can simply take \(\Phi \equiv \hat{S}^{-1}\) where \(S\) is a space of rapidly decreasing functions which is nuclear and invariant by the multiplication by \(\lambda\). In this way \(\Phi\) is also an \(N\)-space. The shift operator is given by
\begin{equation}
V = 1 + H,
\end{equation}

where
\begin{equation}
1(f) = f
\end{equation}

and
\begin{equation}
H(f) = \int_0^x H(x, t)f(t)w(t) \, dt.
\end{equation}

The relation between the functions \(H(x, t)\) and \(q(x)\) is as follows: we have shown in (3.2) that
\begin{equation}
L_2 V = V L_1 \quad \text{in} \quad \Phi'_2
\end{equation}
or
\begin{equation}
L_2(1 + H) = (1 + H)(L_2 + q).
\end{equation}

So \(L_2 H - HL_2 = q + Hq\), which is a hyperbolic equation, and \(G = VV'\) or, in other words,
\begin{equation}
G = 1 + H + H' + HH',
\end{equation}

which means that
\begin{equation}
\{G - 1\}f(x) = \{H + H' + HH'\}f(x)
\end{equation}

where \(f(x)\) is a smooth function with compact support. Now notice that the term on the left-hand side of (5.2) is nothing other than
\begin{equation}
[G - 1]\hat{f}(\lambda) = \int \hat{f}^2(\lambda) y(x, \lambda) \, d[\Gamma_1(\lambda) - \Gamma_2(\lambda)].
\end{equation}

Now, using the expression of the Fourier transform, we have
\begin{equation}
\hat{f}^2(\lambda) = \int f(t)y(t, \lambda)w(t) \, dt.
\end{equation}

Assuming that
\begin{equation}
P(x, t) \equiv \int y(t, \lambda)y(x, \lambda) \, d[\Gamma_1 - \Gamma_2](\lambda)
\end{equation}
is a continuous function of t and x and, using the fact that $f(x)$ is of compact support, we obtain, by applying Fubini's theorem,

$$
(G - 1)f(x) = \int f(t) \left[\int y(t, \lambda)y(x, \lambda) d[\Gamma_1 - \Gamma_2](\lambda) \right] w(t) \, dt
$$

(5.4)

$$
= \int f(t)P(t, x)w(t) \, dt.
$$

We can now express the right-hand side of (5.2):

$$
[H + H' + HH']f(x) = \int_0^x H(x, t)f(t)w(t) \, dt + \int_x^\infty H(t, x)f(t)w(t) \, dt
$$

(5.5)

$$
+ \int_0^x H(x, s)\int_s^\infty H(s, t)f(t)w(t) \, dt w(s) \, ds.
$$

The last term can be written as

$$
\int_0^x \int_0^x H(x, s)H(s, t)w(s) \, ds f(t)w(t) \, dt
$$

(5.5)

$$
+ \int_x^\infty \int_0^x H(x, s)H(s, t)w(s) \, ds f(t)w(t) \, dt,
$$

and so in the weak sense we do have the result

$$
P(t, x) = H(x, t) + \int_0^x H(x, s)H(s, t)w(t) \, dt, \quad t < x.
$$

(5.6)

Suppose that V^{-1} exists and $V^{-1} = 1 + K$. Then we do have

$$
V^{-1}G = V
$$

$$
(1 + K)G = 1 + H^*
$$

$$
(1 + K)Gf(x) = (1 + H^*)f(x)
$$

(5.7)

$$
Gf(x) + \int_0^x K(x, t)Gf(t)w(t) \, dt = f(x) + \int_x^\infty H(t, x)f(t)w(t) \, dt
$$

or

$$
[G - 1]f(x) + \int_0^x K(x, t)f(t)w(t) \, dt + \int_0^x K(x, t)[G - 1]f(t)w(t) \, dt
$$

$$
= \int_x^\infty H(t, x)f(t)w(t) \, dt.
$$

But $[G - 1]f(x) = \int P(t, x)f(t)w(t) \, dt$, so we have

(5.8)

$$
\int P(t, x)f(t)w(t) \, dt + \int_0^x K(x, t)f(t)w(t) \, dt
$$

$$
+ \int_0^x K(x, s)P(s, t)w(s) \, ds f(t)w(t) \, dt = \int_x^\infty H(t, x)f(t)w(t) \, dt
$$

Hence,

(5.9)

$$
P(t, x) + K(x, t) + \int_0^x K(x, s)P(s, t)w(s) \, ds = H(x, t).
$$
Observe that $H(t, x) = 0$ if $t < x$; hence

$$P(t, x) + K(x, t) + \int_0^x K(x, s)P(s, t)w(s)\,ds = 0$$

where $0 \leq t < x$.

Example 2. Everitt and Zettl computed the Weyl–Titchmarsh function, associated with the operator

$$L_2f \equiv \frac{-1}{x^\alpha} f''(x), \quad x \in [0, \infty).$$

They proved that the spectral function associated with

$$L_2f \equiv \frac{-1}{x^\alpha} \frac{d^2}{dx^2} f(x), \quad x \geq 0,$$

$$f'(0) = 0$$

is of the form

$$\Gamma_2(\lambda) = \begin{cases} c \cdot \lambda^{(\alpha+1)/(\alpha+2)} & \text{for } \lambda \geq 0 \\ 0 & \text{for } \lambda < 0. \end{cases}$$

For further details see [2].

Let us prove the same result but using our method. We shall define another operator L_1 and then obtain the shift operator V. Having V we shall use $(d\Gamma_1/d\Gamma_2)(L_2) = VV'$ to obtain an equation for $\Gamma_1(\lambda)$.

Denote by $y(x, \lambda)$ the eigenfunctions of $L_2y(x, \lambda) = \lambda y(x, \lambda)$

$$y''(x, \lambda) + \lambda x^\alpha y(x, \lambda) = 0$$

(5.11)

$$y(x, \lambda) = 1 \quad \text{and} \quad y'(x, \lambda) = 0.$$

Solutions of (5.11) can be written in terms of the Bessel functions ($\lambda = \mu^2$):

$$y(x, \mu^2) = Ar(x)\sqrt{t(x)}\mu J_\nu(t(x)\mu) + Br(x)\sqrt{t(x)}\mu J_{-\nu}(t(x)\mu),$$

where $r(x) = x^{-\alpha/4}$, $t(x) = 2\nu x^{1/2\nu}$ and $\nu = 1/(\alpha + 2)$. A and B are determined from the boundary conditions

$$y(0, \lambda) = 1 \quad \text{and} \quad y'(0, \lambda) = 0.$$

So

$$A = 0 \quad \text{and} \quad B = \mu^{-1/2} \cdot C(\nu),$$

where $C(\nu)$ is a function of ν only.

Define an operator

$$L^2 \overset{\mathcal{T}}{\rightarrow} L_2^2dx$$

$$f \rightarrow \mathcal{T}f(x) = r(x)f(t(x)).$$

We do have $TT' = \text{Id}$. Since $T'g(t) = x(t)^{\alpha/4}g(x(t))$, where $x(t)$ is the inverse function of $t(x)$. Thus

$$y(x, \mu^2) = \mu^{-1/2} \cdot C(\nu) \cdot T(\sqrt{t}J_{-\nu}(t\mu)).$$
Now it is time to find the operator L_1. If
\[\phi(t, \mu^2) = \sqrt{\mu} J_{-\nu}(t \mu) \]
are the eigenfunctionals of L_1, then, from the inversion formula of the Bessel functions,
\[F(\lambda) = \int_0^\infty f(t) \sqrt{t} J_{-\nu}(t \sqrt{\lambda}) \, dt \]
\[f(t) = \int_0^\infty F(\lambda) \sqrt{t} J_{-\nu}(t \sqrt{\lambda}) \, d\sqrt{\lambda}. \]
We deduce that $d\Gamma_1(\lambda) = d\sqrt{\lambda}$.

The shift operator is given by
\[y(x, \mu^2) = \mu^{\nu-1/2} \cdot C(\mu) \cdot T[\phi(x, \mu^2)], \]
since
\[y(x, \lambda) = \lambda^{(\nu-1/2)/2} \cdot C(\nu) \cdot T[\phi(x, \lambda)]. \]
Using the fact that $L_2 y = \lambda y$ we have
\[L_2^{(\nu-1/2)/2} y = \lambda^{(\nu-1/2)/2} y \]
\[= \lambda^{(\nu-1/2)/2} \cdot C(\nu) \cdot L_2^{(\nu-1/2)/2} = T[\phi] \]
Simplifying by $\lambda^{(\nu-1/2)/2}$,
\[y(x, \lambda) = C(\nu) \cdot L_2^{(\nu-1/2)/2} \cdot T[\phi]. \]
Recall that
\[y \equiv V \phi, \]
hence
\[V[\cdot] = C(\nu) \cdot L_2^{(\nu-1/2)/2} \cdot T[\cdot]. \]
From Theorem 4 we obtain that
\[\frac{d\Gamma_1}{d\Gamma_2}(L_2) = V V' = C(\nu)^2 \cdot L_2^{(\nu-1/2)/2} \cdot T \cdot T' L_2^{(\nu-1/2)/2}. \]
Since $TT' = 1$
\[\frac{d\Gamma_1}{d\Gamma_2}(L_2) = C(\nu)^2 \cdot L_2^{(\nu-1/2)}. \]
Hence
\[\frac{d\Gamma_1}{d\Gamma_2}(\lambda) = C(\nu)^2 \cdot \lambda^{(\nu-1/2)}. \]
Let us solve the above differential equation:

\[d\Gamma_2(\lambda) = \frac{1}{C(\nu)^2} \lambda^{1/2-\nu} d\Gamma_1(\lambda) \]

\[= \frac{1}{C(\nu)^2} \lambda^{1/2-\nu} d\sqrt{\lambda} \]

\[\Gamma_2(\lambda) = \frac{1}{C(\nu)^2} \int_0^{\sqrt{\lambda}} s^{2(1/2-\nu)} ds \]

\[= \frac{1}{2-2\nu} \cdot \frac{1}{C(\nu)^2} \int_0^{\sqrt{\lambda}} ds^{2-2\nu} \]

\[\Gamma_2(\lambda) = \frac{1}{2-2\nu} \cdot \frac{1}{C(\nu)^2} \lambda^{1-\nu}. \]

So

\[\Gamma_2(\lambda) = c\lambda^{1-1/(\alpha+2)}, \]

where \(c \) is a constant. That is what Everitt and Zettl have shown.

References

Department of Mathematics, King Fahd University, Dhahran, Saudi Arabia