TOTALLY REAL SETS IN C^2

H. ALEXANDER

(Communicated by Clifford J. Earle, Jr.)

Abstract. We establish the polynomial convexity of certain totally real disks and of annuli in the unit torus satisfying a topological condition.

1

Jöricke [1] recently proved that a totally real disk contained in the unit sphere in C^2 is polynomially convex. More precisely, the result of [1] involves analytic extension but, by work of Stout [7] and Lupacciolu [2], the polynomial convexity follows; see also Rosay and Stout [4]. In this note we shall prove the analogous and easier result when the sphere is replaced by the set $M = \{(z, w): |z| = 1\}$.

Theorem 1. Let K be a smooth totally real compact disk contained in the real hypersurface M. Then K is polynomially convex.

One could possibly prove this by closely imitating the argument of Jöricke; however, the approach we follow, although it has some of the elements of the proof of [1], is probably shorter. Just as in [1] this is not a local result as the unit torus sits in M as a totally real 2-manifold which is not polynomially convex.

Example. If we allow K to fail to be totally real at a single point then it may not be polynomially convex. A simple example for such K is the image of the unit disk by the map $z \rightarrow (\exp(i \cdot |z|^2), z)$. Then K, which is essentially the graph of the exponential, has a complex tangent only at the point $(1, 0)$ and is clearly not polynomially convex since it has circles as fibers over a subarc of the unit circle of the z-plane. An analogous example in the context of [1] is obtained from the map $z \rightarrow (z, \sqrt{1 - |z|^2})$. It should be noted that Wermer (see [3, p. 34]) has given an example of a totally real disk in C^2 which is not polynomially convex.

For a set S in C^2 and $z \in C$ we denote the fiber $\{w \in C: (z, w) \in S\}$ by S_z. To prove the theorem we first claim that K_z is polynomially convex.
in C for all z. Suppose not. Then there is an a in the unit circle such that K_a is not polynomially convex and hence, by Runge's theorem, $C\setminus K_a$ is not connected. By Alexander duality [5, pp. 296, 334] $\hat{H}^1(K_a, \mathbb{Z})$ is nontrivial. Now K is topologically a disk which we can assume sits in a copy E of \mathbb{R}^2. Identifying K_a with $\{a\} \otimes K_a \subseteq K$ and applying Alexander duality again for $K_a \subseteq E$, we conclude that $E\setminus K_a$ is not connected.

Since K is totally real and M has real dimension 3 there is a well-defined real tangent line bundle on K given by the intersection of the complex tangent space of M with the tangent space of K. Since K is contractible, there is a unit tangent vector field v which is a section of this bundle. That is, v is a unit vector field on K which lies pointwise in the complex tangent space to M at each point of K; cf. [1]. Consider the integral curves of v in K. Since v is at each point a derivative in a w direction, the vector field v applied to the function z vanishes identically. Therefore, z is constant on each integral curve. If p is a point of K not in K_a, then, by the Poincaré-Bendixson theory, the integral curve through p joins p to the boundary of K. Since z at p is different from a, this integral curve is disjoint from K_a. This implies that $E\setminus K_a$ is connected. This is a contradiction.

Thus each K_a is polynomially convex. Since $\hat{H}^1(K, C) = 0$, it follows directly from a result of Stolzenberg [6, Corollary 2.20] that K is polynomially convex.

The aforementioned result of Stolzenberg requires that the set K satisfy $\hat{H}^1(K, C) = 0$. However the idea of his proof holds in more general cases, for example, in the following setting. Let T^2 be the unit torus in \mathbb{C}^2. We identify the fundamental group of T^2 with \mathbb{Z}^2 as follows: $[r, s] \in \mathbb{Z}^2$ is identified with (the homotopy class of) the curve $\{(\exp(irt), \exp(ist)): 0 \leq t \leq 2\pi\}$. Let A be a compact annulus contained in T^2 and g a simple closed curve contained in A that generates the fundamental group of A. Let $[p, q]$ be homotopic in T^2 to g; $\pm[p, q]$ is independent of the choice of g.

Theorem 2. If $pq < 0$ or $p = 0 = q$, then A is polynomially convex.

Remark. If $pq > 0$ or exactly one of p and q is zero, then A need not be polynomially convex. Indeed the following is easily verified.

Lemma. If g is a simple closed curve in T^2 which is not null-homotopic, then g is homotopic in T^2 to a curve $[p, q]$ with p and q relatively prime. In particular, if $q = 0$ then $p = 1$ or $p = -1$.

By the lemma, we can assume that p and q are relatively prime. This implies that $\{(z, w) \in T^2: z^q = w^p\}$ is a (connected!) simple closed curve in T^2 which is not polynomially convex. Then a tubular neighborhood of this curve in T^2 provides an example of a nonpolynomially convex annulus A with $g = [p, q]$.

Proof of Theorem 2. If \(pq < 0 \), then by symmetry we can assume that \(p < 0 \) and \(q > 0 \). Let \(a = -p \) and set \(f(z, w) = z^q w^a \). Then \(f \) is identically 1 on the curve \([p, q]\). Since \(f \) has modulus 1 on \(T^2 \) and since \(g \) is homotopic to the curve \([p, q]\) in \(T^2 \), it follows that \(f \) restricted to \(A \) lifts to a map \(F \) of \(A \) into \(C \) such that \(\exp \circ F = f \); i.e. \(F \) is a logarithm of \(f \) on \(A \). Then \(F \) extends to be a logarithm of \(f \) on a neighborhood \(N \) of \(A \) in \(C^2 \).

We claim that \((A)_z = A_z \) for all \(z \) in the unit circle. Since \((T^2)_z \) is a peak set of \(T^2 \), it is enough to show that \(A_z \) is a proper subset of the unit circle. Suppose not. Then \(A \) contains a circle \(k \) of the form \((T^2)_z \) for some \(z \). But then, as the fundamental group of \(A \) is singlely generated, it follows that \(k \) is homotopic in \(A \) to some multiple of \(g \). Hence \(k \) is also homotopic in \(T^2 \) to a multiple of \([p, q]\); this is clearly false—a contradiction.

To prove that \(A \) is polynomially convex we argue by contradiction and suppose otherwise. For \(r < 1 \) we set \(Q = A \cap \{(z, w): r \leq |z| \leq 1 \} \). If \(r \) is sufficiently close to 1, by the last paragraph, \(Q \) is contained in \(N \). By the local maximum modulus principle (cf. [6]) the Shilov boundary of the algebra of functions on \(Q \) which are locally in \(P(Q) \) is contained in the union of \(Q \cap T^2 = A \) and \(Q \cap \{(z, w): |z| = r \} \). On the first set \(f \) has modulus 1 and on the second set \(f \) has modulus \(\leq r^q \). Since \(F = \log(f) \) is locally in \(P(Q) \), the boundary of \(F(Q) \) is contained in the union of two sets: the vertical line \(\{\text{Re}(z) = 0\} \) and the set \(\{\text{Re}(z) \leq q \cdot \log(r)\} \). This implies that \(F(Q) \) does not meet \(\{z: q \cdot \log r < \text{Re}(z) < 0\} \). Hence \(A \) is relatively open in \(A \). This implies that \(A \) is polynomially convex.

If \(p = 0 = q \) then \(g \) is null-homotopic in \(T^2 \); hence \(g \) bounds a disk in \(T^2 \). Thus \(A \) is contained in a compact disk \(K \) in \(T^2 \) and the polynomial convexity of \(A \) follows, say by Theorem 1.

References

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60680