The de Branges-Rovnyak model
HTML articles powered by AMS MathViewer
- by James Guyker
- Proc. Amer. Math. Soc. 111 (1991), 95-99
- DOI: https://doi.org/10.1090/S0002-9939-1991-1031663-2
- PDF | Request permission
Abstract:
A characterization, extending results of A. Beurling, L. de Branges and J. Rovnyak, of those Hilbert spaces of formal power series, which are isometrically equal to a de Branges-Rovnyak (scalar-valued) function space $\mathcal {H}(b)$, is obtained.References
- Joseph A. Ball and Thomas L. Kriete III, Operator-valued Nevanlinna-Pick kernels and the functional models for contraction operators, Integral Equations Operator Theory 10 (1987), no. 1, 17–61. MR 868573, DOI 10.1007/BF01199793
- Arne Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 239–255. MR 27954, DOI 10.1007/BF02395019 L. de Branges, Square summable power series (to appear).
- Louis de Branges and James Rovnyak, Square summable power series, Holt, Rinehart and Winston, New York-Toronto-London, 1966. MR 0215065 R. B. Leech, A characterization of a class of Hilbert spaces of power series, preprint.
- N. K. Nikol′skiĭ and V. I. Vasyunin, Notes on two function models, The Bieberbach conjecture (West Lafayette, Ind., 1985) Math. Surveys Monogr., vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 113–141. MR 875237, DOI 10.1090/surv/021/11
- Donald Sarason, Shift-invariant spaces from the Brangesian point of view, The Bieberbach conjecture (West Lafayette, Ind., 1985) Math. Surveys Monogr., vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 153–166. MR 875239, DOI 10.1090/surv/021/13
- Donald Sarason, Shift-invariant spaces from the Brangesian point of view, The Bieberbach conjecture (West Lafayette, Ind., 1985) Math. Surveys Monogr., vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 153–166. MR 875239, DOI 10.1090/surv/021/13
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 95-99
- MSC: Primary 47A45; Secondary 30H05, 46E20, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1991-1031663-2
- MathSciNet review: 1031663