AN INEQUALITY WITH APPLICATIONS TO THE SUBElliPTICITY
OF THE $\bar{\partial}$-NEUMANN PROBLEM

LOP-HING HO

(Communicated by Barbara L. Keyfitz)

Abstract. We prove an interesting inequality in this note. This inequality will be used to remove an unnecessary assumption in [2]. That paper dealt with the sufficient condition for the subellipticity of the $\bar{\partial}$-Neumann problem on nonpseudoconvex domains. We will then state the revised theorem and show why the original assumption can be removed.

Proposition 1. Let $\Omega \subset \mathbb{C}^n$, $x_0 \in b\Omega$, and $L \in T^{1,0}(b\Omega)$. Then given any $\varepsilon > 0$, there exists a neighbourhood U of x_0 and $C > 0$ such that for all u, $v \in C_0^\infty(U \cap \bar{\Omega})$ we have

$$|(Lu, v)| \leq \varepsilon(\|Lu\|^2 + \|Lv\|^2) + C(\|u\|^2 + \|v\|^2).$$

Proof. We know that the adjoint L^* of L is given by

$$L^* = -\bar{L} + g,$$

where g is smooth. Hence

$$L + L^* = L - \bar{L} + g.$$

By a change of coordinates we may assume that

$$L - \bar{L} = -ia(x)\frac{\partial}{\partial x_1},$$

where $a(x) > 0$ in U. Hence the symbol of $L - \bar{L}$ is given by

$$\sigma(L - \bar{L}) = a(x)\xi_1.$$

We define operators P^+, P^-, and P^0 as follows:

$P^+u(\xi, r) = \chi_1(\xi_1)\hat{u}(\xi, r)$

$P^-u(\xi, r) = \chi_2(\xi_1)\hat{u}(\xi, r)$

$P^0 = I - P^+ - P^-,$
where \(\chi_1, \chi_2 \in C^\infty(\mathbb{R}) \), \(0 \leq \chi_i \leq 1, \ i = 1, 2 \), and
\[
\chi_1(\xi) = \begin{cases}
1 & \xi \geq 1, \\
0 & \xi < 0, \\
0 & \xi > 0, \\
1 & \xi \leq -1.
\end{cases}
\]

We now define
\[
\{u, v\}^+ = \langle (L + L^*)P^+u, P^+v \rangle + K\langle P^+u, P^+v \rangle,
\]
where \(K \) is a large positive constant.

Lemma 2. \(\{u, v\}^+ \) is an inner product for large \(K \).

Proof. Since \(a(x)\xi_1 \) is nonnegative on the support of \(\chi_1 \), by Garding’s inequality we have
\[
\langle (L - L)P^+u, P^+u \rangle \geq -C\langle P^+u, P^+u \rangle.
\]

Hence for some large \(K \) we have \(\{u, u\}^+ \geq 0 \).

It is easy to see that \(\{u, u\}^+ = 0 \) if and only if \(u = 0 \), and that \(\{u, v\}^+ = \{v, u\}^+ \).

Since \(\{u, v\}^+ \) is an inner product, by Schwarz’s inequality
\[
|\{u, v\}^+| \leq (\{u, u\}^+)^{1/2}(\{v, v\}^+)^{1/2}.
\]

It is easily seen that
\[
\{u, u\}^+ = \langle (L + L^*)P^+u, P^+u \rangle + K\langle P^+u, P^+u \rangle
\]
\[
\leq \varepsilon \|Lu\|^2 + C\|u\|^2
\]
by (1). Similarly,
\[
\{v, v\}^+ \leq \varepsilon \|Lv\|^2 + C\|v\|^2.
\]

Hence
\[
\langle LP^+u, P^+v \rangle = \{u, v\}^+ - \langle L^*P^+u, P^+v \rangle - K\langle P^+u, P^+v \rangle
\]
\[
= \{u, v\}^+ + \langle P^+u, LP^+v \rangle - \langle gP^+u, P^+v \rangle - K\langle P^+u, P^+v \rangle,
\]
and we get from (2), (3), and (4) that
\[
|\langle LP^+u, P^+v \rangle| \leq \varepsilon(\|Lu\|^2 + \|Lv\|^2) + C(\|u\|^2 + \|v\|^2).
\]

Similarly, we define
\[
\{u, v\}^- = -\langle (L + L^*)P^-u, P^-v \rangle + K\langle P^-u, P^-v \rangle.
\]

Just as above, \(\{u, v\}^- \) is an inner product, and again
\[
|\langle LP^-u, P^-v \rangle| \leq \varepsilon(\|Lu\|^2 + \|Lv\|^2) + C(\|u\|^2 + \|v\|^2).
\]
Finally,

\(\langle Lu, v \rangle = \langle LP^+ u, P^+ v \rangle + \langle LP^- u, P^- v \rangle + \langle LP^+ u, P^0 v \rangle + \langle LP^+ u, P^- v \rangle + \langle LP^- u, P^+ v \rangle + \langle LP^0 u, P^+ v \rangle + \langle LP^0 u, P^- v \rangle + \langle LP^0 u, P^- v \rangle. \)

To deal with the third to ninth terms on the right-hand side of (7), we need the facts that

\[||[L, P]u||^2 < \text{const} \ ||u||^2, \]

where \(P = P^+, P^-, \) or \(P^0 \) and that

\[||(L - \Gamma)Pm||^2 < \text{const} \ ||w||^2 \]

if the symbol of \(P \) is a compactly supported function of \(\xi_1 \).

Thus, combining (5), (6), (7), and the above two facts, we get

\[\langle Lu, v \rangle \leq \varepsilon \langle ||Lu||^2 + ||Lv||^2 \rangle + C \langle ||u||^2 + ||v||^2 \rangle. \]

We can now restate Theorem 2.2 in [2]. We refer the reader to [2] for the details and for definitions of \(A^{(k)} \) and \(I^u_{m} \). We assume that the reader is familiar with the \(\overline{\partial} \)-Neumann problem and subelliptic estimates. A detailed formulation of the problem can be found in [1] or [3].

Theorem 3. Let \(\Omega \) be a domain in \(\mathbb{C}^n \) with \(C^\infty \) boundary, \(x_0 \in b\Omega \), and \(L_1, \ldots, L_n \) a \(C^\infty \) basis for \(T^{1,0} \) so that \(L_1, \ldots, L_{n-1} \) are tangential on \(b\Omega \). Assume that there exists a neighborhood \(U \) of \(x_0 \) such that for some \(k \geq n - q \) the matrix \(A^{(k)} \) associated with the matrix of the Levi form is positive semidefinite in \(U \), then if \(1 \in I^u_{m}(x_0) \) for some \(m \), there is a subelliptic estimate for \((p, q)\) forms at \(x_0 \).

The following extra assumption is made in Theorem 2.2 in [2]:

For all \(\varepsilon > 0 \), there exists \(C > 0 \) (\(C \) depends on \(S^0 \) but not on \(\phi \)) such that

\[|\langle D\phi, S^0 \phi \rangle| \leq \varepsilon \langle ||\overline{\partial} \phi||^2 + ||\overline{\partial}^* \phi||^2 \rangle + C \langle ||\phi||^2 \rangle \]

for all \(\phi \in D^{p,q}_{U} \) where \(D \in \{L_{k+1}, \ldots, L_{n-1}\}, S^0 \) is a tangential pseudodifferential operator of order zero.

In [2] this assumption is used to verify the inequality

\[\sum_{j \notin J or j \in (1, \ldots, k, n)} ||\overline{L}_j \phi ||^2 + \sum_{j \in J and k < j < n} ||L_j \phi ||^2 \leq C \langle ||\overline{\partial} \phi||^2 + ||\overline{\partial}^* \phi||^2 + ||\phi||^2 \rangle \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
for all $\phi \in D_{U}^{p,q}$ from the inequality

$$
\sum_{j \notin J \text{ or } k \leq j < n} \|L_j \phi_j\|^2 + \sum_{j \in J \text{ and } k < j < n} \|L_j \phi_j\|^2 + \sum_{l,j} \int_{\partial \Omega} A^{(k)}_{l,j} \phi_l \phi_j dS + R(\phi)
$$

(10)

$$
\leq C(\|\partial \phi\|^2 + \|\partial^* \phi\|^2 + \|\phi\|^2),
$$

where $R(\phi) = \sum_{j=1}^{n} \langle L_j \phi_j, h_j \phi_K \rangle + O(\|\phi\|^2)$ for some smooth functions h_j.

We prove the following to remove assumption (8):

Lemma 4. The inequality (9) is true without assumption (8).

Proof. We want to prove (9) using (10) and Proposition 1. Clearly what we need to prove is that for all $j = 1, 2, \ldots, n$,

$$
\langle L_j \phi_j, h_j \phi_K \rangle \leq \varepsilon \left(\sum_{j \notin J \text{ or } k \leq j < n} \|L_j \phi_j\|^2 + \sum_{j \in J \text{ and } k < j < n} \|L_j \phi_j\|^2 \right) + C\|\phi\|^2.
$$

(11)

When $j \in \{1, 2, \ldots, k, n\}$, we have

$$
\langle L_j \phi_j, h_j \phi_K \rangle \leq \varepsilon \|L_j \phi_j\|^2 + C\|\phi\|^2.
$$

(12)

When $j \in \{k+1, \ldots, n-1\}$, if $j \notin J$ or $j \in K$, then $\|L_j \phi_j\|^2$ or $\|L_j \phi_K\|^2$ is in the right-hand side of (11). Hence, using the type of inequality in (12) or by integrating L_j by parts on the left-hand side, we can absorb the term $\langle L_j \phi_j, h_j \phi_K \rangle$ in the right-hand side of (11). Finally, when $j \in J$ and $j \notin K$, we use Proposition 1, and we have

$$
\langle L_j \phi_j, h_j \phi_K \rangle \leq \varepsilon (\|L_j \phi_j\|^2 + \|L_j \phi_j\|^2) + C\|\phi\|^2.
$$

We see that the terms in the right-hand side of the above inequality are in the right-hand side of (11). This finishes the proof.

References