Index of faithful normal conditional expectations
HTML articles powered by AMS MathViewer
- by Sze-Kai Tsui
- Proc. Amer. Math. Soc. 111 (1991), 111-118
- DOI: https://doi.org/10.1090/S0002-9939-1991-1033962-7
- PDF | Request permission
Abstract:
Let $E$ be a faithful normal conditional expectation of a factor $M$ onto its subfactor $N$, and the index of $E$ be denoted by ${\operatorname {IND}_E}$. We investigate the question: For two such faithful normal conditional expectations ${E_1},{E_2}$ of $M$ onto $N$, when does ${\operatorname {IND}}_{{E_1}} = {\operatorname {IND}}_{{E_2}}$ hold? In this paper we answer this question completely for type $I$ factor $M$. We also derive a tensor product formula for index, i.e., ${\operatorname {IND}}_{{E_1} \otimes {E_2}} = ({\operatorname {IND}}_{{E_1}})({\operatorname {IND}}_{{E_2}})$. For any $\alpha > 9$ we construct uncountable nonisomorphic faithful normal conditional expectations $E$ of a factor $M$ onto its subfactor $N$ with ${\operatorname {IND}_E} = \alpha$ such that both of $M$ and $N$, are of type $I$ or $II$ or $II{I_\lambda },0 \leq \lambda \leq 1$. For each $\beta \in \{ 4{\cos ^2}\pi /n,|n \geq 3\} \cup [4,\infty )$ we exhibit a type $II{I_\lambda }$ factor $M$ and its subfactor $N$ and a faithful normal conditional expectation $E$ such that ${\operatorname {IND}}_E = \beta$.References
- D. Bures and H.-S. Yin, Shifts on the hyperfinite factor of type $II_{1}$, preprint.
- Marie Choda, Shifts on the hyperfinite $\textrm {II}_1$-factor, J. Operator Theory 17 (1987), no. 2, 223–235. MR 887220
- A. Connes, On the spatial theory of von Neumann algebras, J. Functional Analysis 35 (1980), no. 2, 153–164. MR 561983, DOI 10.1016/0022-1236(80)90002-6
- Uffe Haagerup, Operator-valued weights in von Neumann algebras. I, J. Functional Analysis 32 (1979), no. 2, 175–206. MR 534673, DOI 10.1016/0022-1236(79)90053-3
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- Hideki Kosaki, Extension of Jones’ theory on index to arbitrary factors, J. Funct. Anal. 66 (1986), no. 1, 123–140. MR 829381, DOI 10.1016/0022-1236(86)90085-6
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- Robert T. Powers, An index theory for continuous semigroups of $\ast$-endomorphisms of ${\mathfrak {B}}({\mathfrak {H}})$ and $\textrm {II}_1$ factors, Operator algebras and mathematical physics (Iowa City, Iowa, 1985) Contemp. Math., vol. 62, Amer. Math. Soc., Providence, RI, 1987, pp. 447–460. MR 878394, DOI 10.1090/conm/062/878394
- Marc A. Rieffel and Alfons Van Daele, The commutation theorem for tensor products of von Neumann algebras, Bull. London Math. Soc. 7 (1975), no. 3, 257–260. MR 383096, DOI 10.1112/blms/7.3.257 S. Strǎtilǎ, Modular theory in operator algebras, Abacus Press, 1981. J. Tomiyama, Tensor product and projections of norm one in von Neumann algebras, Lecture Notes, Kobenhavn Univ., 1971.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 111-118
- MSC: Primary 46L37; Secondary 46L10, 46L35
- DOI: https://doi.org/10.1090/S0002-9939-1991-1033962-7
- MathSciNet review: 1033962