Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem
HTML articles powered by AMS MathViewer

by Naoki Shioji PDF
Proc. Amer. Math. Soc. 111 (1991), 187-195 Request permission

Abstract:

Granas and Dugundji obtained the following generalization of the Knaster-Kuratowski-Mazurkiewicz theorem. Let $X$ be a subset of a topological vector space $E$ and let $G$ be a set-valued map from $X$ into $E$ such that for each finite subset $\{ {x_1}, \ldots ,{x_n}\}$ of $X,co\{ {x_1}, \ldots ,{x_n}\} \subset \cup _{i = 1}^nG{x_i}$ and for each $x \in X,Gx$ is finitely closed, i.e., for any finite-dimensional subspace $L$ of $E,Gx \cap L$ is closed in the Euclidean topology of $L$. Then $\{ Gx:x \in X\}$ has the finite intersection property. By relaxing, among others, the condition that $X$ is a subset of $E$, we obtain a further generalization of the theorem and show some of its applications.
References
  • Hichem Ben-El-Mechaiekh, Paul Deguire, and Andrzej Granas, Une alternative non linéaire en analyse convexe et applications, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 3, 257–259 (French, with English summary). MR 681592
  • J. Dugundji and A. Granas, KKM maps and variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 4, 679–682. MR 519889
  • Samuel Eilenberg and Deane Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 68 (1946), 214–222. MR 16676, DOI 10.2307/2371832
  • Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952. MR 0050886
  • Ky Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1960/61), 305–310. MR 131268, DOI 10.1007/BF01353421
  • Ky Fan, A minimax inequality and applications, Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), Academic Press, New York, 1972, pp. 103–113. MR 0341029
  • Ky Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), no. 4, 519–537. MR 735533, DOI 10.1007/BF01458545
  • L. Górniewicz, A Lefschetz-type fixed point theorem, Fund. Math. 88 (1975), no. 2, 103–115. MR 391062, DOI 10.4064/fm-88-2-103-115
  • Lech Górniewicz, Homological methods in fixed-point theory of multi-valued maps, Dissertationes Math. (Rozprawy Mat.) 129 (1976), 71. MR 394637
  • A Granas, KKM-maps and their applications to nonlinear problems, The Scottish Book: Mathematics from the Scottish Café (R. D. Mauldin, ed.), Birkhäuser, Basel, Boston, 1982, pp. 45-61. C. W. Ha, Minimax and fixed point theorems, Math. Ann. 248 (1980), 73-77.
  • Chung Wei Ha, On a minimax inequality of Ky Fan, Proc. Amer. Math. Soc. 99 (1987), no. 4, 680–682. MR 877039, DOI 10.1090/S0002-9939-1987-0877039-9
  • B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für $n$-dimensional simplexe, Fund. Math. XIV (1929), 132-137.
  • Marc Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), no. 1, 151–201. MR 721236, DOI 10.1016/0022-247X(83)90244-5
  • Naoki Shioji and Wataru Takahashi, Fan’s theorem concerning systems of convex inequalities and its applications, J. Math. Anal. Appl. 135 (1988), no. 2, 383–398. MR 967217, DOI 10.1016/0022-247X(88)90162-X
  • S. Simons, Minimax and variational inequalities. Are they of fixed point or Hahn-Banach type?, Game Theory and Mathematical Economics, North-Holland, 1981, pp. 379-387.
  • S. Simons, Two-function minimax theorems and variational inequalities for functions on compact and noncompact sets, with some comments on fixed-point theorems, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 377–392. MR 843623, DOI 10.4310/pamq.2010.v6.n2.a14
  • Wataru Takahashi, Fixed point, minimax, and Hahn-Banach theorems, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 419–427. MR 843628
Similar Articles
Additional Information
  • © Copyright 1991 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 111 (1991), 187-195
  • MSC: Primary 47H10; Secondary 47H19, 54H25, 58C06
  • DOI: https://doi.org/10.1090/S0002-9939-1991-1045601-X
  • MathSciNet review: 1045601