Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A generalized van Kampen-Flores theorem
HTML articles powered by AMS MathViewer

by K. S. Sarkaria PDF
Proc. Amer. Math. Soc. 111 (1991), 559-565 Request permission

Abstract:

The $n$-skeleton of a $(2n + 2)$-simplex does not embed in ${{\mathbf {R}}^{2n}}$. This well-known result is due (independently) to van Kampen, 1932, and Flores, 1933, who proved the case $p = 2$ of the following: Theorem. Let $p$ be a prime, and let $s$ and $l$ be positive integers such that $l(p - 1) \leq p(s - 1)$. Then, for any continuous map $f$ from a $(ps + p - 2)$-dimensional simplex into ${{\mathbf {R}}^l}$, there must exist $p$ points $\{ {x_1}, \ldots ,{x_p}\}$, lying in pairwise disjoint faces of dimensions $\leq s - 1$ of this simplex, such that $f({x_1}) = \cdots = f({x_p})$.
References
  • E. G. Bajmóczy and I. Bárány, On a common generalization of Borsuk’s and Radon’s theorem, Acta Math. Acad. Sci. Hungar. 34 (1979), no. 3-4, 347–350 (1980). MR 565677, DOI 10.1007/BF01896131
  • I. Bárány, S. B. Shlosman, and A. Szűcs, On a topological generalization of a theorem of Tverberg, J. London Math. Soc. (2) 23 (1981), no. 1, 158–164. MR 602247, DOI 10.1112/jlms/s2-23.1.158
  • K. Borsuk, Drei Sätze über die $n$-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
  • Albrecht Dold, Simple proofs of some Borsuk-Ulam results, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 65–69. MR 711043, DOI 10.1090/conm/019/711043
  • A. Flores, Über $n$-dimensionale Komplexe die im ${R_{2n + 1}}$ absolut selbstverschlungen sind, Ergeb. Math. Kolloq. 6 (1933/34), 4-7.
  • Johann Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten, Math. Ann. 83 (1921), no. 1-2, 113–115 (German). MR 1512002, DOI 10.1007/BF01464231
  • K. S. Sarkaria, Kneser colorings of polyhedra, Illinois J. Math. 33 (1989), no. 4, 592–620. MR 1007897
  • K. S. Sarkaria, A generalized Kneser conjecture, J. Combin. Theory Ser. B 49 (1990), no. 2, 236–240. MR 1064678, DOI 10.1016/0095-8956(90)90029-Y
  • —, Van Kampen obstructions, in preparation.
  • H. Tverberg, A generalization of Radon’s theorem, J. London Math. Soc. 41 (1966), 123–128. MR 187147, DOI 10.1112/jlms/s1-41.1.123
  • E. R. van Kampen, Komplexe in euklidischen Räumen, Abh. Math. Sem. Hamburg 9 (1932), 72-78; Berichtigung dazu, ibid (1932), 152-153.
  • C. Weber, Plongements de polyhèdres dans le domaine métastable, Comment. Math. Helv. 42 (1967), 1–27 (French). MR 238330, DOI 10.1007/BF02564408
  • Wu Wen-tsün, A theory of imbedding, immersion, and isotopy of polytopes in a euclidean space, Science Press, Peking, 1965. MR 0215305
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N10, 57M05
  • Retrieve articles in all journals with MSC: 57N10, 57M05
Additional Information
  • © Copyright 1991 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 111 (1991), 559-565
  • MSC: Primary 57N10; Secondary 57M05
  • DOI: https://doi.org/10.1090/S0002-9939-1991-1004423-6
  • MathSciNet review: 1004423