A generalized van Kampen-Flores theorem
HTML articles powered by AMS MathViewer
- by K. S. Sarkaria
- Proc. Amer. Math. Soc. 111 (1991), 559-565
- DOI: https://doi.org/10.1090/S0002-9939-1991-1004423-6
- PDF | Request permission
Abstract:
The $n$-skeleton of a $(2n + 2)$-simplex does not embed in ${{\mathbf {R}}^{2n}}$. This well-known result is due (independently) to van Kampen, 1932, and Flores, 1933, who proved the case $p = 2$ of the following: Theorem. Let $p$ be a prime, and let $s$ and $l$ be positive integers such that $l(p - 1) \leq p(s - 1)$. Then, for any continuous map $f$ from a $(ps + p - 2)$-dimensional simplex into ${{\mathbf {R}}^l}$, there must exist $p$ points $\{ {x_1}, \ldots ,{x_p}\}$, lying in pairwise disjoint faces of dimensions $\leq s - 1$ of this simplex, such that $f({x_1}) = \cdots = f({x_p})$.References
- E. G. Bajmóczy and I. Bárány, On a common generalization of Borsuk’s and Radon’s theorem, Acta Math. Acad. Sci. Hungar. 34 (1979), no. 3-4, 347–350 (1980). MR 565677, DOI 10.1007/BF01896131
- I. Bárány, S. B. Shlosman, and A. Szűcs, On a topological generalization of a theorem of Tverberg, J. London Math. Soc. (2) 23 (1981), no. 1, 158–164. MR 602247, DOI 10.1112/jlms/s2-23.1.158 K. Borsuk, Drei Sätze über die $n$-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
- Albrecht Dold, Simple proofs of some Borsuk-Ulam results, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 65–69. MR 711043, DOI 10.1090/conm/019/711043 A. Flores, Über $n$-dimensionale Komplexe die im ${R_{2n + 1}}$ absolut selbstverschlungen sind, Ergeb. Math. Kolloq. 6 (1933/34), 4-7.
- Johann Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten, Math. Ann. 83 (1921), no. 1-2, 113–115 (German). MR 1512002, DOI 10.1007/BF01464231
- K. S. Sarkaria, Kneser colorings of polyhedra, Illinois J. Math. 33 (1989), no. 4, 592–620. MR 1007897
- K. S. Sarkaria, A generalized Kneser conjecture, J. Combin. Theory Ser. B 49 (1990), no. 2, 236–240. MR 1064678, DOI 10.1016/0095-8956(90)90029-Y —, Van Kampen obstructions, in preparation.
- H. Tverberg, A generalization of Radon’s theorem, J. London Math. Soc. 41 (1966), 123–128. MR 187147, DOI 10.1112/jlms/s1-41.1.123 E. R. van Kampen, Komplexe in euklidischen Räumen, Abh. Math. Sem. Hamburg 9 (1932), 72-78; Berichtigung dazu, ibid (1932), 152-153.
- C. Weber, Plongements de polyhèdres dans le domaine métastable, Comment. Math. Helv. 42 (1967), 1–27 (French). MR 238330, DOI 10.1007/BF02564408
- Wu Wen-tsün, A theory of imbedding, immersion, and isotopy of polytopes in a euclidean space, Science Press, Peking, 1965. MR 0215305
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 559-565
- MSC: Primary 57N10; Secondary 57M05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1004423-6
- MathSciNet review: 1004423