Exponential sums and Goppa codes. I
HTML articles powered by AMS MathViewer
- by Carlos J. Moreno and Oscar Moreno
- Proc. Amer. Math. Soc. 111 (1991), 523-531
- DOI: https://doi.org/10.1090/S0002-9939-1991-1028291-1
- PDF | Request permission
Abstract:
A bound is obtained which generalizes the Carlitz-Uchiyama result, based on a theorem of Bombieri and Weil about exponential sums. This new bound is used to estimate the covering radius of long binary Goppa codes. A new lower bound is also derived on the minimum distance of the dual of a binary Goppa code, similar to that for BCH codes. This is an example of the use of a number-theory bound for the problem of the estimation of minimum distance of codes, as posed in research problem 9.9 of Mac Williams and Sloane, The Theory of Error Correcting Codes.References
- Enrico Bombieri, On exponential sums in finite fields, Amer. J. Math. 88 (1966), 71–105. MR 200267, DOI 10.2307/2373048
- L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J. 24 (1957), 37–41. MR 82517, DOI 10.1215/S0012-7094-57-02406-7
- Philippe Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inform. Theory IT-21 (1975), no. 5, 575–576. MR 411819, DOI 10.1109/tit.1975.1055435
- Tor Helleseth, On the covering radius of cyclic linear codes and arithmetic codes, Discrete Appl. Math. 11 (1985), no. 2, 157–173. MR 789141, DOI 10.1016/S0166-218X(85)80006-8 F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes, North-Holland, Amsterdam, 1977.
- Carlos Moreno, Algebraic curves over finite fields, Cambridge Tracts in Mathematics, vol. 97, Cambridge University Press, Cambridge, 1991. MR 1101140, DOI 10.1017/CBO9780511608766
- A. Tietäväinen, On the covering radius of long binary BCH codes, Discrete Appl. Math. 16 (1987), no. 1, 75–77. MR 869739, DOI 10.1016/0166-218X(87)90055-2
- André Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207. MR 27006, DOI 10.1073/pnas.34.5.204
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 523-531
- MSC: Primary 11T23; Secondary 11L40, 14G15, 94B40
- DOI: https://doi.org/10.1090/S0002-9939-1991-1028291-1
- MathSciNet review: 1028291