Maximal triangular subalgebras need not be closed
HTML articles powered by AMS MathViewer
- by Yiu Tung Poon
- Proc. Amer. Math. Soc. 111 (1991), 475-479
- DOI: https://doi.org/10.1090/S0002-9939-1991-1034888-5
- PDF | Request permission
Abstract:
We give an example to show that a maximal triangular subalgebra need not be closed.References
- William B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578–642. MR 223899, DOI 10.2307/2373237
- William B. Arveson, Operator algebras and measure preserving automorphisms, Acta Math. 118 (1967), 95–109. MR 210866, DOI 10.1007/BF02392478
- William B. Arveson, A density theorem for operator algebras, Duke Math. J. 34 (1967), 635–647. MR 221293
- Richard L. Baker, Triangular UHF algebras, J. Funct. Anal. 91 (1990), no. 1, 182–212. MR 1054118, DOI 10.1016/0022-1236(90)90052-M
- J. A. Erdos, Some questions concerning triangular operator algebras, Proc. Roy. Irish Acad. Sect. A 74 (1974), 223–232. Spectral Theory Symposium (Trinity Coll., Dublin, 1974). MR 361819
- Richard V. Kadison and I. M. Singer, Triangular operator algebras. Fundamentals and hyperreducible theory, Amer. J. Math. 82 (1960), 227–259. MR 121675, DOI 10.2307/2372733
- Paul S. Muhly, Kichi-Suke Saito, and Baruch Solel, Coordinates for triangular operator algebras, Ann. of Math. (2) 127 (1988), no. 2, 245–278. MR 932297, DOI 10.2307/2007053
- Paul S. Muhly and Baruch Solel, Subalgebras of groupoid $C^*$-algebras, J. Reine Angew. Math. 402 (1989), 41–75. MR 1022793, DOI 10.1515/crll.1989.402.41
- John Lindsay Orr, On the closure of triangular algebras, Amer. J. Math. 112 (1990), no. 3, 481–497. MR 1055655, DOI 10.2307/2374753
- J. R. Peters, Y. T. Poon, and B. H. Wagner, Triangular AF algebras, J. Operator Theory 23 (1990), no. 1, 81–114. MR 1054818
- J. R. Peters and B. H. Wagner, Triangular AF algebras and nest subalgebras of UHF algebras, J. Operator Theory 25 (1991), no. 1, 79–123. MR 1191255
- Yiu Tung Poon, A complete isomorphism invariant for a class of triangular UHF algebras, J. Operator Theory 27 (1992), no. 2, 221–230. MR 1249644
- S. C. Power, On ideals of nest subalgebras of $C^\ast$-algebras, Proc. London Math. Soc. (3) 50 (1985), no. 2, 314–332. MR 772716, DOI 10.1112/plms/s3-50.2.314
- S. C. Power, Classification of tensor products of triangular operator algebras, Proc. London Math. Soc. (3) 61 (1990), no. 3, 571–614. MR 1069516, DOI 10.1112/plms/s3-61.3.571
- S. C. Power, The classification of triangular subalgebras of AF $C^*$-algebras, Bull. London Math. Soc. 22 (1990), no. 3, 269–272. MR 1041142, DOI 10.1112/blms/22.3.269
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266
- Michael A. Thelwall, Maximal triangular subalgebras of AF algebras, J. Operator Theory 25 (1991), no. 1, 163–176. MR 1191258 —, Dilation theory for subalgebras of AF algebras, preprint. B. A. Ventura, Strongly maximal triangular UHF algebras, preprint. —, A note on subdiagonality for triangular algebras, preprint.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 475-479
- MSC: Primary 46L10; Secondary 46H25, 47D25
- DOI: https://doi.org/10.1090/S0002-9939-1991-1034888-5
- MathSciNet review: 1034888