THE GAP BETWEEN THE FIRST TWO EIGENVALUES OF A ONE-DIMENSIONAL SCHRÖDINGER OPERATOR WITH SYMMETRIC POTENTIAL

S. ABRAMOVICH

(Communicated by Kenneth R. Meyer)

Abstract. We prove the inequality \(\lambda_2[V_1] - \lambda_1[V_1] \geq \lambda_2[V_0] - \lambda_1[V_0] \) for the difference of the first two eigenvalues of one-dimensional Schrödinger operators

\[-\frac{d^2}{dx^2} + V_i(x), i = 0, 1, \]

where \(V_1 \) and \(V_0 \) are symmetric potentials on \((a, b)\) and on \((a, (a + b)/2)\), and \(V_0 - V_1 \) is decreasing on \((a, (3a + b)/4)\).

The gap between consecutive eigenvalues of Schrödinger operators has been the object of considerable attention recently (see [1-5] and many others).

In this note we use the same method established in [1].

We consider the two Schrödinger operators \(H_0 = -\frac{d^2}{dx^2} + V_0(x) \), and \(H_1 = -\frac{d^2}{dx^2} + V_1(x) \), both acting on \(L^2(0, \pi) \) with Dirichlet boundary conditions and with both \(V_0 \) and \(V_1 \) symmetric with respect to \(x = \pi/2 \) and in \(L^1(0, \pi) \).

Let \((\lambda_1, u_1)\) and \((\lambda_2, u_2)\) be the first two eigenvalues together with their associated eigenfunctions of \(H_1 \), and let \((\mu_1, v_1)\) and \((\mu_2, v_2)\) be the corresponding quantities for \(H_0 \). We will use the following lemma, which is part of Proposition 1 in [1].

Lemma. Let \(H_0 \) and \(H_1 \) be as described above; then

\[\lambda_2 - \lambda_1 \geq \mu_2 - \mu_1 + \frac{4}{(u, u)} \int_0^{\pi/2} v_1 u_2 \left(\frac{v_1}{u_1} \right)' \left(\frac{u_2}{v_2} \right)' \, dx,\]

where \(u = (v_1/v_2)u_2 \).

Proof. See the proof of inequality (7) in Proposition 1 [1].

Definition. A potential \(V \) is a double-well potential on the closed interval \(I \) if there are \(c_1 \leq c_2 \leq c_3 \in I \) such that \(V \) is nonincreasing for \(x \leq c_1 \) and \(c_2 \leq x \leq c_3 \) and is nondecreasing otherwise.

Received by the editors November 1, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 34B25.

Key words and phrases. Schrödinger operators, eigenvalue gaps.
Theorem 1. Let H_0 and H_1 be as described above. If $V_0 - V_1$ is a double-well potential and symmetric on $(0, \pi/2)$ then

\begin{equation}
\lambda_2 - \lambda_1 \geq \mu_2 - \mu_1
\end{equation}

with equality if and only if $V_0 - V_1$ is constant on $[0, \pi]$.

Proof. (2) will follow if we can show that the integral in (1) satisfies

\begin{equation}
I = \int_0^{\pi/2} \nu_1 u_2 \left(\frac{\nu_1}{\nu_2} \right)' \left(\frac{u_2}{\nu_2} \right)' \, dx \geq 0.
\end{equation}

In order to prove (3), let us use the following:

\begin{equation}
\left(\frac{\nu_1}{\nu_2} \right)' = \frac{\mu_2 - \mu_1}{\nu_2^2} \int_0^x \nu_1 \nu_2 \, dt \geq 0, \ 0 \leq x \leq \pi/2
\end{equation}

\begin{equation}
\left(\frac{u_2}{\nu_2} \right)' = \frac{1}{\nu_2^2} (u_2 u_2' - u_2' u_2') = \frac{1}{\nu_2^2} \int_0^x [(V_1 - V_0) - (\lambda_2 - \mu_2)] u_2 \nu_2 \, dt.
\end{equation}

Substituting (4) and (5) into (3), we get

\begin{align*}
I &= \int_0^{\pi/2} \nu_1 u_2 \left(\frac{\nu_1}{\nu_2} \right)' \left(\frac{u_2}{\nu_2} \right)' \, dx \\
&= \int_0^{\pi/2} \left(\frac{\nu_1 u_2}{\nu_2^4} (\mu_2 - \mu_1) \int_0^x \nu_1 \nu_2 \, dt \int_0^x [(V_1 - V_0) - (\lambda_2 - \mu_2)] u_2 \nu_2 \, dt \right) \, dx.
\end{align*}

We use the following properties:

(a) $G(x) = \int_0^x \nu_1 \nu_2 \, dt$ is a positive increasing function, and therefore

\begin{equation}
0 \leq G \left(\frac{\pi}{4} - x \right) \leq G \left(\frac{\pi}{4} + x \right), \ 0 \leq x \leq \frac{\pi}{4}.
\end{equation}

(b) $A(x) = (\nu_2 u_2' - u_2' \nu_2') = \int_0^x [(V_1 - V_0) - (\lambda_2 - \mu_2)] u_2 \nu_2 \, dt$ must vanish at $x = \pi/4$ because of the symmetry of $V_0 - V_1$ on $[0, \pi/2]$, as well as at $x = \pi/2$ because of the symmetry of $V_0 - V_1$ on $[0, \pi]$. Also, $V_1 - V_0$ is nondecreasing on $[0, \pi/4]$. Hence $A(x)$ is nonpositive on $[0, \pi/4]$ and $-A(\pi/4 - x) = A(\pi/4 + x) \geq 0, \ 0 \leq x \leq \pi/4$.

(c) Using the symmetry of V_0 about $\pi/4$ and using $\nu_1(-\pi/2) = \nu_1(0) = 0$, we get

\begin{equation}
0 \leq \nu_1 \left(\frac{\pi}{4} - x \right) \leq \nu_1 \left(\frac{\pi}{4} + x \right), \ 0 \leq x \leq \frac{\pi}{4}.
\end{equation}

(d) $u_2(x)$ and $\nu_2(x)$ are positive symmetric functions on $0 \leq x \leq \pi/2$.

Using properties (a), (b), (c), and (d) to evaluate I, we get immediately that $I \geq 0$; hence $\lambda_2 - \lambda_1 \geq \mu_2 - \mu_1$. Equality occurs only when $V_1 - V_0 - (\lambda_2 - \mu_2) = 0$, which means $V_1 - V_0$ is a constant. Hence Theorem 1 is proven.
Theorem 2. Let $H = -\frac{d^2}{dx^2} + V(x)$ be an operator on $L^2(a, b)$ with Dirichlet boundary condition, and suppose that V is a symmetric double-well potential and is symmetric also on $(a, (a + b)/2)$. Then the first two eigenvalues satisfy $\lambda_2 - \lambda_1 \leq \frac{3\pi^2}{(b - a)^2}$, with equality if and only if V is a constant.

Proof. In Theorem 1 take $V_0 = V$ and $V_1 = 0$, and observe that for $V_1 = 0$, $\lambda_2 = \frac{4\pi^2}{(b - a)^2}$, $\lambda_1 = \frac{\pi^2}{(b - a)^2}$.

Remark. By reversing the roles of V_0 and V_1, we get that if V is a symmetric double-barrier potential which is also symmetric on $(a, (a + b)/2)$ we get $\lambda_2 - \lambda_1 \geq \frac{3\pi^2}{(b - a)^2}$.

REFERENCES

