The gap between the first two eigenvalues of a one-dimensional Schrödinger operator with symmetric potential
HTML articles powered by AMS MathViewer
- by S. Abramovich
- Proc. Amer. Math. Soc. 111 (1991), 451-453
- DOI: https://doi.org/10.1090/S0002-9939-1991-1036981-X
- PDF | Request permission
Abstract:
We prove the inequality ${\lambda _2}[{V_1}] - {\lambda _1}[{V_1}] \geq {\lambda _2}[{V_0}] - {\lambda _1}[{V_0}]$ for the difference of the first two eigenvalues of one-dimensional Schrödinger operators $- \frac {{{d^2}}}{{d{x^2}}} + {V_i}(x),i = 0,1$, where ${V_1}$ and ${V_0}$ are symmetric potentials on $(a,b)$ and on $(a,(a + b)/2)$, and ${V_0} - {V_1}$ is decreasing on $(a,(3a + b)/4)$.References
- Mark S. Ashbaugh and Rafael Benguria, Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials, Proc. Amer. Math. Soc. 105 (1989), no. 2, 419–424. MR 942630, DOI 10.1090/S0002-9939-1989-0942630-X
- E. B. Davies, Structural isomers, double wells, resonances, and Dirichlet decoupling, Ann. Physics 157 (1984), no. 1, 166–182. MR 761771, DOI 10.1016/0003-4916(84)90051-4
- Evans M. Harrell, Double wells, Comm. Math. Phys. 75 (1980), no. 3, 239–261. MR 581948, DOI 10.1007/BF01212711
- Werner Kirsch and Barry Simon, Comparison theorems for the gap of Schrödinger operators, J. Funct. Anal. 75 (1987), no. 2, 396–410. MR 916759, DOI 10.1016/0022-1236(87)90103-0
- I. M. Singer, Bun Wong, Shing-Tung Yau, and Stephen S.-T. Yau, An estimate of the gap of the first two eigenvalues in the Schrödinger operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 2, 319–333. MR 829055
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 451-453
- MSC: Primary 34L40; Secondary 34B05, 34L15, 47E05, 81Q10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1036981-X
- MathSciNet review: 1036981