Asymptotic behavior of stable manifolds
HTML articles powered by AMS MathViewer
- by Michal Fečkan
- Proc. Amer. Math. Soc. 111 (1991), 585-593
- DOI: https://doi.org/10.1090/S0002-9939-1991-1037207-3
- PDF | Request permission
Abstract:
The relation between local stable manifolds of an ordinary differential equation and its discretization is studied. We show that a local stable manifold of a hyperbolic fixed point of an ordinary differential equation is the limit of local stable manifolds of the same fixed point of its discretizations as the discretization parameter $h > 0$ approaches 0.References
- Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0486784
- Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633, DOI 10.1007/978-1-4613-8159-4
- Stephen Schecter, Stable manifolds in the method of averaging, Trans. Amer. Math. Soc. 308 (1988), no. 1, 159–176. MR 946437, DOI 10.1090/S0002-9947-1988-0946437-2
- Jack K. Hale, Ordinary differential equations, 2nd ed., Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980. MR 587488
- Milan Medveď, Dynamické systémy, VEDA, Vydavatel′stvo Slovenskej Akadémie Vied, Bratislava, 1988 (Slovak). With Russian and English summaries. MR 982929
- James Murdock and Clark Robinson, Qualitative dynamics from asymptotic expansions: local theory, J. Differential Equations 36 (1980), no. 3, 425–441. MR 576160, DOI 10.1016/0022-0396(80)90059-5
- Kenneth J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics reported, Vol. 1, Dynam. Report. Ser. Dynam. Systems Appl., vol. 1, Wiley, Chichester, 1988, pp. 265–306. MR 945967
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 585-593
- MSC: Primary 34C29; Secondary 58F15, 58F25
- DOI: https://doi.org/10.1090/S0002-9939-1991-1037207-3
- MathSciNet review: 1037207