Holomorphic motions and polynomial hulls
HTML articles powered by AMS MathViewer
- by Zbigniew Slodkowski
- Proc. Amer. Math. Soc. 111 (1991), 347-355
- DOI: https://doi.org/10.1090/S0002-9939-1991-1037218-8
- PDF | Request permission
Abstract:
A holomorphic motion of $E \subset \mathbb {C}$ over the unit disc $D$ is a map $f:D \times \mathbb {C} \to \mathbb {C}$ such that $f(0,w) = w,w \in E$, the function $f(z,w) = {f_z}(w)$ is holomorphic in $z$, and ${f_z}:E \to \mathbb {C}$ is an injection for all $z \in D$. Answering a question posed by Sullivan and Thurston [13], we show that every such $f$ can be extended to a holomorphic motion $F:D \times \mathbb {C} \to \mathbb {C}$. As a main step a "holomorphic axiom of choice" is obtained (concerning selections from the sets $\mathbb {C}\backslash {f_z}(E),z \in D)$. The proof uses earlier results on the existence of analytic discs in the polynomial hulls of some subsets of ${\mathbb {C}^2}$.References
- Herbert Alexander and John Wermer, Polynomial hulls with convex fibers, Math. Ann. 271 (1985), no. 1, 99–109. MR 779607, DOI 10.1007/BF01455798
- Lipman Bers and H. L. Royden, Holomorphic families of injections, Acta Math. 157 (1986), no. 3-4, 259–286. MR 857675, DOI 10.1007/BF02392595
- Franc Forstnerič, Polynomial hulls of sets fibered over the circle, Indiana Univ. Math. J. 37 (1988), no. 4, 869–889. MR 982834, DOI 10.1512/iumj.1988.37.37042
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Donna Kumagai, Variation of fibers and polynomially convex hulls, Complex Variables Theory Appl. 11 (1989), no. 3-4, 261–267. MR 1007661, DOI 10.1080/17476938908814344
- Serge Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987. MR 886677, DOI 10.1007/978-1-4757-1945-1
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343
- Raghavan Narasimhan, Analysis on real and complex manifolds, Advanced Studies in Pure Mathematics, Vol. 1, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1968. MR 0251745
- Zbigniew Słodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981), no. 3, 363–386. MR 626955, DOI 10.1007/BF01679703
- Zbigniew Slodkowski, Polynomial hulls with convex sections and interpolating spaces, Proc. Amer. Math. Soc. 96 (1986), no. 2, 255–260. MR 818455, DOI 10.1090/S0002-9939-1986-0818455-X
- Zbigniew Slodkowski, Polynomial hulls in $\textbf {C}^2$ and quasicircles, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), no. 3, 367–391 (1990). MR 1050332
- Dennis P. Sullivan and William P. Thurston, Extending holomorphic motions, Acta Math. 157 (1986), no. 3-4, 243–257. MR 857674, DOI 10.1007/BF02392594
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 347-355
- MSC: Primary 58F23; Secondary 30C35, 30C62, 32E20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1037218-8
- MathSciNet review: 1037218