## Holomorphic motions and polynomial hulls

HTML articles powered by AMS MathViewer

- by Zbigniew Slodkowski
- Proc. Amer. Math. Soc.
**111**(1991), 347-355 - DOI: https://doi.org/10.1090/S0002-9939-1991-1037218-8
- PDF | Request permission

## Abstract:

A holomorphic motion of $E \subset \mathbb {C}$ over the unit disc $D$ is a map $f:D \times \mathbb {C} \to \mathbb {C}$ such that $f(0,w) = w,w \in E$, the function $f(z,w) = {f_z}(w)$ is holomorphic in $z$, and ${f_z}:E \to \mathbb {C}$ is an injection for all $z \in D$. Answering a question posed by Sullivan and Thurston [13], we show that every such $f$ can be extended to a holomorphic motion $F:D \times \mathbb {C} \to \mathbb {C}$. As a main step a "holomorphic axiom of choice" is obtained (concerning selections from the sets $\mathbb {C}\backslash {f_z}(E),z \in D)$. The proof uses earlier results on the existence of analytic discs in the polynomial hulls of some subsets of ${\mathbb {C}^2}$.## References

- Herbert Alexander and John Wermer,
*Polynomial hulls with convex fibers*, Math. Ann.**271**(1985), no. 1, 99–109. MR**779607**, DOI 10.1007/BF01455798 - Lipman Bers and H. L. Royden,
*Holomorphic families of injections*, Acta Math.**157**(1986), no. 3-4, 259–286. MR**857675**, DOI 10.1007/BF02392595 - Franc Forstnerič,
*Polynomial hulls of sets fibered over the circle*, Indiana Univ. Math. J.**37**(1988), no. 4, 869–889. MR**982834**, DOI 10.1512/iumj.1988.37.37042 - John B. Garnett,
*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971** - Philip Hartman,
*Ordinary differential equations*, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR**0171038** - Donna Kumagai,
*Variation of fibers and polynomially convex hulls*, Complex Variables Theory Appl.**11**(1989), no. 3-4, 261–267. MR**1007661**, DOI 10.1080/17476938908814344 - Serge Lang,
*Introduction to complex hyperbolic spaces*, Springer-Verlag, New York, 1987. MR**886677**, DOI 10.1007/978-1-4757-1945-1 - R. Mañé, P. Sad, and D. Sullivan,
*On the dynamics of rational maps*, Ann. Sci. École Norm. Sup. (4)**16**(1983), no. 2, 193–217. MR**732343** - Raghavan Narasimhan,
*Analysis on real and complex manifolds*, Advanced Studies in Pure Mathematics, Vol. 1, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1968. MR**0251745** - Zbigniew Słodkowski,
*Analytic set-valued functions and spectra*, Math. Ann.**256**(1981), no. 3, 363–386. MR**626955**, DOI 10.1007/BF01679703 - Zbigniew Slodkowski,
*Polynomial hulls with convex sections and interpolating spaces*, Proc. Amer. Math. Soc.**96**(1986), no. 2, 255–260. MR**818455**, DOI 10.1090/S0002-9939-1986-0818455-X - Zbigniew Slodkowski,
*Polynomial hulls in $\textbf {C}^2$ and quasicircles*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**16**(1989), no. 3, 367–391 (1990). MR**1050332** - Dennis P. Sullivan and William P. Thurston,
*Extending holomorphic motions*, Acta Math.**157**(1986), no. 3-4, 243–257. MR**857674**, DOI 10.1007/BF02392594

## Bibliographic Information

- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**111**(1991), 347-355 - MSC: Primary 58F23; Secondary 30C35, 30C62, 32E20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1037218-8
- MathSciNet review: 1037218