Combinatorial set theory and cardinal function inequalities
HTML articles powered by AMS MathViewer
- by R. E. Hodel
- Proc. Amer. Math. Soc. 111 (1991), 567-575
- DOI: https://doi.org/10.1090/S0002-9939-1991-1039531-7
- PDF | Request permission
Abstract:
Three theorems of combinatorial set theory are proven. From the first we obtain the de Groot inequality $\left | X \right | \leq {2^{hL(X)}}$, the Ginsburg-Woods inequality $\left | X \right | \leq {2^{e(X)\Delta (X)}}$, the Erdös-Rado Partition Theorem for $n = 2$, and set-theoretic versions of the Hajnal-Juhász inequalities $\left | X \right | \leq {2^{c(X)\chi (X)}}$ and $\left | X \right | \leq {2^{s(X)\psi (X)}}$. From the second we obtain a generalization of the Arhangel’skiĭ inequality $\left | X \right | \leq {2^{L(X)\chi (X)}}$. From the third we obtain the Charlesworth inequality $n(X) \leq psw{(X)^{L(X)}}$ and a generalization of the Burke-Hodel inequality $\left | {K(X)} \right | \leq {2^{e(X)psw(X)}}$.References
- A. V. Arhangel’skiĭ, On the cardinality of bicompacta satisfying the axiom of first countability, Soviet Math. Dokl. 10 (1969), 951-955.
- D. K. Burke and R. E. Hodel, The number of compact subsets of a topological space, Proc. Amer. Math. Soc. 58 (1976), 363–368. MR 418014, DOI 10.1090/S0002-9939-1976-0418014-0
- Arthur Charlesworth, On the cardinality of a topological space, Proc. Amer. Math. Soc. 66 (1977), no. 1, 138–142. MR 451184, DOI 10.1090/S0002-9939-1977-0451184-8
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- R. Engelking and M. Karłowicz, Some theorems of set theory and their topological consequences, Fund. Math. 57 (1965), 275–285. MR 196693, DOI 10.4064/fm-57-3-275-285
- P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489. MR 81864, DOI 10.1090/S0002-9904-1956-10036-0
- P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85–90. MR 111692, DOI 10.1112/jlms/s1-35.1.85
- John Ginsburg and R. Grant Woods, A cardinal inequality for topological spaces involving closed discrete sets, Proc. Amer. Math. Soc. 64 (1977), no. 2, 357–360. MR 461407, DOI 10.1090/S0002-9939-1977-0461407-7
- J. de Groot, Discrete subspaces of Hausdorff spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 537–544. MR 210061
- A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, Indag. Math. 29 (1967), 343–356. Nederl. Akad. Wetensch. Proc. Ser. A 70. MR 0229195
- R. E. Hodel, On a theorem of Arhangel′skiĭ concerning Lindelöf $p$-spaces, Canadian J. Math. 27 (1975), 459–468. MR 375205, DOI 10.4153/CJM-1975-054-8
- R. E. Hodel, A technique for proving inequalities in cardinal functions, Topology Proc. 4 (1979), no. 1, 115–120 (1980). MR 583694
- R. Hodel, Cardinal functions. I, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 1–61. MR 776620 I. Juhász, Cardinal functions in topology—ten years later, Mathematisch Centrum, Amsterdam, 1980.
- E. Michael, A note on intersections, Proc. Amer. Math. Soc. 13 (1962), 281–283. MR 133236, DOI 10.1090/S0002-9939-1962-0133236-4 A. Miščenko, Spaces with point-countable bases, Soviet Math. Dokl. 3 (1962), 855-858. Dai MuMing, A topological space cardinality inequality involving the *Lindelöf number, Acta Math. Sinica 26 (1983), 731-735.
- R. Pol, Short proofs of two theorems on cardinality of topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1245–1249 (English, with Russian summary). MR 383333 B. Šapirovskiĭ, On discrete subspaces of topological spaces. Weight, tightness and Souslin number, Soviet Math. Dokl. 13 (1972), 215-219.
- Shu Hao Sun and Yan Ming Wang, A strengthened topological cardinal inequality, Bull. Austral. Math. Soc. 32 (1985), no. 3, 375–378. MR 819569, DOI 10.1017/S0004972700002483
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 567-575
- MSC: Primary 54A25; Secondary 04A20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1039531-7
- MathSciNet review: 1039531