The free lattice-ordered group over a nilpotent group
HTML articles powered by AMS MathViewer
- by Michael R. Darnel
- Proc. Amer. Math. Soc. 111 (1991), 301-307
- DOI: https://doi.org/10.1090/S0002-9939-1991-1042263-2
- PDF | Request permission
Abstract:
We show that the free lattice-ordered group over a finitely generated torsionfree nilpotent group is $l$-solvable of some finite rank.References
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- Paul Conrad, Free lattice-ordered groups, J. Algebra 16 (1970), 191โ203. MR 270992, DOI 10.1016/0021-8693(70)90024-4
- Michael R. Darnel, Recent results on the free lattice-ordered group over a right-orderable group, Ordered algebraic structures (Curaรงao, 1988) Math. Appl., vol. 55, Kluwer Acad. Publ., Dordrecht, 1989, pp.ย 51โ57. MR 1094824
- Michael Darnel, Special-valued $l$-groups and abelian covers, Order 4 (1987), no.ย 2, 191โ194. MR 916494, DOI 10.1007/BF00337696
- Michael R. Darnel and A. M. W. Glass, Commutator relations and identities in lattice-ordered groups, Michigan Math. J. 36 (1989), no.ย 2, 203โ211. MR 1000524, DOI 10.1307/mmj/1029003943
- A. M. W. Glass, W. Charles Holland, and Stephen H. McCleary, The structure of $l$-group varieties, Algebra Universalis 10 (1980), no.ย 1, 1โ20. MR 552151, DOI 10.1007/BF02482885 A.M.W. Glass, H. Hollister, and A. Rhemtulla, Right orderings versus lattice-orderings, Notices Amer. Math. Soc. 2 (1978), A-222.
- Marshall Hall Jr., The theory of groups, Chelsea Publishing Co., New York, 1976. Reprinting of the 1968 edition. MR 0414669
- Kurt A. Hirsch, รber lokal-nilpotente Gruppen, Math. Z. 63 (1955), 290โ294 (German). MR 72874, DOI 10.1007/BF01187939
- A. H. Rhemtulla, Right-ordered groups, Canadian J. Math. 24 (1972), 891โ895. MR 311538, DOI 10.4153/CJM-1972-088-x
- J. E. Smith, Solvable and $l$-solvable $l$-groups, Algebra Universalis 18 (1984), no.ย 1, 106โ109. MR 743460, DOI 10.1007/BF01182251
- Elliot Carl Weinberg, Free lattice-ordered abelian groups, Math. Ann. 151 (1963), 187โ199. MR 153759, DOI 10.1007/BF01398232
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 301-307
- MSC: Primary 06F15
- DOI: https://doi.org/10.1090/S0002-9939-1991-1042263-2
- MathSciNet review: 1042263