COMPARISON THEOREMS FOR THE ν-ZEROES OF LEGENDRE FUNCTIONS $P^m_\nu(z_0)$ WHEN $-1 < z_0 < 1$

FRANK E. BAGINSKI

Abstract. We consider the problem of ordering the elements of $\{\nu^m_j(z_0)\}$, the set of ν-zeroes of Legendre functions $P^m_\nu(z_0)$ for $m = 0, 1, \ldots$ and $z_0 \in (-1, 1)$. In general, we seek to determine conditions on (m, j) and (n, i) under which we can assert that $\nu^m_j < \nu^n_i$. A number of such results were established in [2] for $z_0 \in [0, 1)$, and in the work that we present here we extend a number of these to the case $z_0 \in (-1, 1)$. In addition, we prove $\nu^{m+2}_j < \nu^m_j$ for $z_0 \in (-1, 0)$ and $\nu^3_j < \nu^6_1$ for $z_0 \in (-1, 1)$. Using the results established here and in [2], we are able to determine the ordering of the first eleven ν-zeroes of $P^m_\nu(z_0)$ for $0 < z_0 < 1$ and show that the twelfth ν-zero is not necessarily distinct.

1. Introduction

For a fixed $z_0 \in (-1, 1)$ and $m = 0, 1, \ldots$, we will let $\{\nu^m_j(z_0)\}$ denote the set of positive ν-zeroes of Legendre functions $P^m_\nu(z_0)$. The principal goal is determine conditions on (m, j) and (n, i) under which we can assert that $\nu^m_j < \nu^n_i$. One such result which follows from the Sturm-Liouville theory is that

\begin{equation}
\nu^m_j(z_0) < \nu^{m+1}_j(z_0) < \nu^m_{j+1}(z_0), \quad -1 < z_0 < 1
\end{equation}

(See [10].) The problem of ordering the ν^m_j's when $0 \leq z_0 < 1$ was first considered in [2], where the following results were established:

\begin{equation}
\nu^{m+2}_j(z_0) < \nu^m_{j+1}(z_0), \quad 0 < z_0 < 1,
\end{equation}

\begin{equation}
\nu^{m+2}_j(0) = \nu^m_{j+1}(0),
\end{equation}

\begin{equation}
\nu^0_2(z_0) < \nu^3_1(z_0), \quad \nu^1_2(z_0) < \nu^4_1(z_0), \quad \nu^0_3(z_0) < \nu^5_1(z_0), \quad 0 < z_0 < 1.
\end{equation}

Received by the editors August 8, 1989; some of these results were presented at the 857th Meeting of the AMS at University Park, PA, April 7–8, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 33A45.

Key words and phrases. Zeros of Legendre functions, Sturm-Liouville theory.

©1991 American Mathematical Society

0002-9939/91 $1.00 + .25$ per page
Combining (1.1)–(1.4), it follows that the first ten \(\nu \)-zeroes are
\[
(1.5) \quad \nu_1^0 < \nu_1^1 < \nu_2^0 < \nu_1^3 < \nu_1^2 < \nu_2^1 < \nu_1^4 < \nu_2^2 < \nu_3^0 < \nu_1^5, \quad 0 < z_0 < 1.
\]
The ordering in (1.5) is unique.

The above results lead to several additional questions: Which are the next \(\nu \)-zeroes in the chain of inequalities in (1.5)? How do \(\nu_{j+1}^m \) and \(\nu_{j+2}^m \) compare for \(z_0 \in (-1, 1) \)? In the following, we will consider these and related questions. The main results of this paper are contained in §3.

On the basis of numerical calculations, it was conjectured in [2] that the \(\nu \)-zero which followed \(\nu_1^5 \) in (1.5) was \(\nu_2^3 \). An analytical proof of this follows from the inequality,
\[
(1.6) \quad \nu_2^3(z_0) < \nu_1^6(z_0), \quad -1 < z_0 < 1,
\]
which is established in Theorem 1. In Lemma 2, we show that
\[
(1.7) \quad \nu_{j+1}^m(z_0) < \nu_j^{m+2}(z_0), \quad -1 < z_0 < 0.
\]

Theorem 3 combines (1.1)–(1.3) with Lemma 2 and gives the relative ordering of \(\nu_i^m(z_0), \nu_{j+1}^m(z_0), \) and \(\nu_{k+2}^m(z_0) \) for \(-1 < z_0 < 1 \).

In addition, we will show that the inequalities in (1.4) hold for all \(z_0 \in (-1, 1) \). (See Theorem 2.) Although (1.1)–(1.6) imply that the first eleven \(\nu \)-zeroes of \(P_{\nu}^m(z) \) are distinct for all \(0 < z_0 < 1 \), in §4 we show that the twelfth \(\nu \)-zero is not necessarily distinct. Moreover, Theorem 3 shows that the ordering in (1.5) is not preserved for \(-1 < z_0 \leq 0 \).

2. Preliminaries

In this section, we present some properties of the Legendre functions and their zeroes which will be needed in §3. For convenience, here and in the following sections \(m \) will denote a nonnegative integer and \(n, i, j, k \) will denote positive integers, unless otherwise stated.

The solution \(y = P_{\nu}^m(z) \) that satisfies
\[
(2.1a) \quad \frac{d}{dz} \left((1 - z^2) \frac{d}{dz} y \right) + \left(\nu(\nu + 1) - \frac{m^2}{1 - z^2} \right) y = 0, \quad -1 < z < 1,
\]
\[
(2.1b) \quad y(1) \text{ is bounded},
\]
is called a Legendre function of the first kind of degree \(\nu \) and order \(m \). (See [4] for a general discussion of the Legendre functions and their properties.) If \(-1 < z \leq 1 \) and \(\nu > 0 \), then \(P_{\nu}^m(z) \) can be expressed [3, p. 148] as
\[
(2.2) \quad P_{\nu}^m(z) = \frac{(-1)^m \Gamma(\nu + m + 1)}{2^m m! \Gamma(\nu - m + 1)} (1 - z^2)^{m/2} \sum_{n=0}^{\infty} \frac{(1 + m + \nu)_n (m - \nu)_n}{(m + 1)_n n! 2^n} (1 - z)^n,
\]
where \(\Gamma(z) \) is the gamma function and \((a)_n \) denotes the Pochhammer symbol,
\[
(a)_0 = 1,
\]
\[
(a)_n = a(a + 1) \ldots (a + n - 1).
\]
Later, we will need the following identity:

\[(2.3) \quad P_{\nu}^{m+2}(z) + 2(m+1)z(1-z^2)^{-1/2}P_{\nu}^{m+1}(z) + (\nu-m)(\nu+m+1)P_{\nu}^{m}(z) = 0\]

(See [3, p. 161].) For a fixed \(z_0 \in (-1,1)\), the pairs \((\nu(\nu+1), y(z))\) satisfying (2.1) and \(y(z_0) = 0\) will be denoted by

\[(2.4) \quad (\nu_j^m(\nu_j^m + 1), P_{\nu_j^m}^{m}(z))\]

where \(P_{\nu_j^m}^{m}(z_0) = 0\), \(m = 0, 1, \ldots\), and \(j = 1, 2, \ldots\).

The next result summarizes a few of the important properties of the \(\nu_j^m\)'s. Its proof follows the arguments in [2, Lemma 1] with some minor modifications.

Lemma 1. Let \(m\) be a nonnegative integer. There exists a unique sequence \(\{\nu_j^m(\tau)\} \ni j = 1, 2, \ldots\) such that for every \(j\), the function \(\nu = \nu_j^m(\tau)\) satisfies

\[(*) \quad P_{\nu}^{m}(\tau) = 0, \quad \text{for all } \tau \in (-1, 1).\]

Moreover, each \(\nu_j^m(\tau)\) is analytic and strictly increasing as a function of \(\tau\) for \(\tau \in (-1, 1)\).

It will be convenient at times to consider \(P_{\nu}^{m}(\cos \phi)\) for \(0 < \phi \leq \phi_0 < \pi\) where \(z = \cos \phi\) and \(z_0 = \cos \phi_0\). As a function of \(\phi_0\), we see from Lemma 1 that \(\nu_j^m(\phi_0)\) is decreasing for \(\phi_0 \in (0, \pi)\). It will be clear from the context whether \(\nu_j^m\) is to be considered as a function of \(z_0\) or as a function of \(\phi_0 = \arccos(z_0)\).

A straightforward calculation shows that if \(P_{\nu}^{m}(z)\) is a solution of (2.1), then \(u = \sqrt{\sin \phi}P_{\nu}^{m}(\cos \phi)\) satisfies

\[(2.5) \quad u'' + \left(\frac{\nu^2 + 1}{2} + \frac{1-4m^2}{4\sin^2 \phi}\right) u = 0.\]

From [7, p. 17], we see that \(v = \sqrt{\phi}J_m((\nu + \frac{1}{2})\phi)\) is a solution of

\[v'' + \left(\nu + \frac{1}{2} + \frac{1-4m^2}{4\phi^2}\right) v = 0,\]

where \(J_m\) is the Bessel function of order \(m\). From the Sturm-Liouville theory (See [10, Chapter 7]), \(P_{\nu_j^m}^{m}(z)\) has \(j - 1\) \(z\)-zeroes on \((z_0, 1)\). Moreover, for a general \(\nu\) (not necessarily one of the \(\nu_j^m\)'s), we see from (2.5) that there are \([\nu - m]\) \(z\)-zeroes of \(P_{\nu}^{m}(z)\) on \((-1, 1)\), where \([x] = n\) for \(n \leq x < n + 1\). \(P_{n}^{m}(z)\) has exactly \(n - m\) \(z\)-zeroes on \((-1, 1)\) and \(P_{n+1}^{m}\) has exactly \(n - m + 1\) \(z\)-zeroes on \((-1, 1)\). (See [6, p. 246].) To see this, suppose \(\nu = \nu^*\) and \(n < \nu^* < n + 1\). By applying the Sturm Comparison Theorem [5] to the solutions of (2.5) for \(\nu = n, \nu^*\) and \(n + 1\), respectively, we see that \(P_{\nu}^{m}(z)\) must have at least \(n - m\) \(z\)-zeroes on \((-1, 1)\) and at most \(n - m + 1\) \(z\)-zeroes on \((-1, 1)\). We conclude that \(P_{\nu}^{m}(z)\) has exactly \([\nu^* - m]\) \(z\)-zeroes on \((-1, 1)\).
For fixed \(\nu \), we will denote the \(z \)-zeroes of \(P^m_\nu(z) \) that are between \(-1\) and \(1\) by \(z^m_{\nu,i} \), where \(z^m_{\nu,i} > z^m_{\nu,i+1} \). By definition of the \(\nu_j^m(z_0) \)'s, it follows that

\[
(2.6) \quad \nu_j(z^m_{\nu,j}) = \nu.
\]

We define \(\phi^m_{\nu,j} \) to be the solution of

\[
(z^m_{\nu,j} = \cos(\phi^m_{\nu,j})
\]

such that \(0 < \phi^m_{\nu,j} < \pi \). It follows that \(\phi^m_{\nu,j} < \phi^m_{\nu,j+1} \).

From (2.2), we see that

\[
(2.7) \quad P^m_m(z_0) = \frac{(-1)^m \Gamma(2m+1)}{2^m m!} (1 - z_0^2)^{m/2}.
\]

From Rodrigue's formula [6, p. 174] and Rolle's Theorem, it follows that \(P^m_{m+2j-1}(z) \) has \(j - 1 \) \(z \)-zeroes on \((0, 1)\) and \(\nu_j^m = m + 2j - 1 \) when \(z_0 = 0 \). Similarly, \(P^m_{m+j-1}(z) \) has \(j - 1 \) \(z \)-zeroes on \((-1, 1)\) and

\[
\lim_{z_0 \to -1+} \nu_j^m(z_0) = m + j - 1.
\]

Since \(\nu_j^m(z_0) \) is increasing on \((-1, 1)\), we see that

\[
(2.8) \quad m + j - 1 < \nu_j^m(z_0) < m + 2j - 1, \quad -1 < z_0 < 0.
\]

From [8], we have

\[
(2.9) \quad \frac{1}{3} < \frac{1}{\sin^2 \phi} - \frac{1}{\phi^2} < \alpha(\phi), \quad 0 < \phi < \bar{\phi} \leq \pi/2,
\]

where \(\alpha(\phi) = \sin^{-2} \phi - \phi^{-2} \). Note that \(\lim_{\phi \to 0^+} \alpha(\phi) = 1/3 \). From (2.9), we see that

\[
(2.10) \quad \frac{\phi^2}{1 + \alpha(\phi) \phi^2} < \sin^2 \phi < \frac{\phi^2}{1 + \frac{1}{3} \phi^2}, \quad 0 < \phi < \bar{\phi} \leq \pi/2.
\]

Multiplying (2.9) by \(1 - 4m^2 \) with \(m \geq 1 \), we obtain

\[
(2.11) \quad \frac{1 - 4m^2}{4 \phi^2} > \frac{h^2}{4} > \frac{1 - 4m^2}{4 \sin^2 \phi} > \frac{1 - 4m^2}{4 \phi^2} - \frac{k^2(\bar{\phi})}{4}, \quad 0 < \phi < \bar{\phi} \leq \pi/2,
\]

where \(h^2 = (4m^2 - 1)/3 \) and \(k^2(\bar{\phi}) = (4m^2 - 1)\alpha(\bar{\phi}) \).

Next, we consider the following pair of differential equations and their re-
spective solutions which are related to Bessel's equation [7, p. 17],

\[U'' + \left(\left(\nu + \frac{1}{2} \right)^2 - \frac{h^2}{4} + \frac{1 - 4m^2}{4\phi^2} \right) U = 0, \quad 0 < \phi < \phi, \]

\[U = \sqrt{\phi} J_m \left(\sqrt{\left(\nu + \frac{1}{2} \right)^2 - \frac{h^2}{4} \phi} \right), \]

\[V'' + \left(\left(\nu + \frac{1}{2} \right)^2 - \frac{k^2(\phi)}{4} + \frac{1 - 4m^2}{4\phi^2} \right) V = 0, \quad 0 < \phi < \phi, \]

\[V = \sqrt{\phi} J_m \left(\sqrt{\left(\nu + \frac{1}{2} \right)^2 - \frac{k^2}{4} \phi} \right). \]

Let \(u \) be a solution of (2.5). From (2.11) and the Sturm Comparison Theorem, it follows that the \(k \)th zero of \(U \) occurs before the \(k \)th zero of \(u \) and the \(k \)th zero of \(u \) occurs before the \(k \)th zero of \(V \). In particular, we have for \(m \geq 1 \),

\[(2.12a) \quad \frac{J_m^k}{\sqrt{(\nu + \frac{1}{2})^2 - \frac{h^2}{4}}} < \phi_{\nu,k}^m < \frac{J_m^k}{\sqrt{(\nu + \frac{1}{2})^2 - \frac{k^2}{4}}}, \]

where \(J_m^k \) is the \(k \)th positive zero of \(J_m(z) \). If \(m = 0 \), we find that

\[(2.12b) \quad \frac{J_0^k}{\sqrt{(\nu + \frac{1}{2})^2 + \frac{\nu}{4}}} < \phi_{\nu,k}^0 < \frac{J_0^k}{\sqrt{(\nu + \frac{1}{2})^2 + \frac{1}{12}}}. \]

3. Ordering the \(\nu \)-zeroes of Legendre functions

This section contains the principle results of this paper. We begin with a comparison of \(\nu_2^3 \) and \(\nu_1^6 \):

Theorem 1. \(\nu_2^3(z_0) < \nu_1^6(z_0) \) for all \(-1 < z_0 < 1\).

Proof. Here, it will be convenient to let \(z_0 = \cos \phi_0 \) and to consider \(\nu_1^6 \) and \(\nu_2^3 \) as functions of \(\phi_0 \). First, we will show that if \(\nu = \nu_1^6 = \nu_2^3 \), then \(\nu > 7 \). Then, we will show that \(\nu = \nu_1^6 = \nu_2^3 \) is impossible if \(\nu > 7 \).

Part 1. Since \(\nu_2^3(\phi_0) \) and \(\nu_1^6(\phi_0) \) are decreasing in \(\phi_0 \), by (2.8), we have

\[\lim_{\phi_0 \to \pi^-} \nu_2^3(\phi_0) = 4, \quad \lim_{\phi_0 \to \pi^-} \nu_1^6(\phi_0) = 6. \]

Since \(\nu_1^6(\phi_0) > 6 \) for \(\phi_0 \in (0, \pi) \) and \(\nu_2^3(\phi_0) < 6 \) for \(\phi_0 \in (\pi/2, \pi) \), we see that if \(\nu = \nu_2^3(\phi_0) = \nu_1^6(\phi_0) \) for some \(\phi_0 \), then \(\nu \geq 6 \) and \(0 < \phi_0 < \pi/2 \).

Next, suppose that \(\nu = \nu_2^3 = \nu_1^6 \) for some \(z_0 = \cos \phi_0 \) and \(0 < \phi_0 < \pi/2 \).

From (2.3) we see that

\[(A) \quad \left(\begin{array}{c} 10z_0(1 - z_0^2)^{-1/2} \\ 1 \\ \end{array} \right) \left(\begin{array}{c} (\nu - 4)(\nu + 5) \\ 8z_0(1 - z_0^2)^{-1/2} \end{array} \right) \left(\begin{array}{c} P_5^\nu(z_0) \\ P_6^\nu(z_0) \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right). \]
Since by (1.1), $P^5_\nu(z_0)$ and $P^4_\nu(z_0)$ cannot vanish simultaneously, we see that the determinant of the 2×2 matrix in (A) must be zero, and we are led to the condition that

$$z_0^2 = \frac{\nu(\nu + 1) - 20}{\nu(\nu + 1) + 60}.$$

From (B), we see that for $6 \leq \nu < 7$, $\sqrt{1151} \leq z_0 < \sqrt{929}$. On the other hand, if we set $\phi = \text{arc} \cos \sqrt{1151}$, $m = 6$, $k = 1$ and $j_1^6 \doteq 9.9361$ in (2.12a), we find that for such a ϕ_0 and ν,

$$z_0 = \cos \phi_0 = \cos(\phi_{\nu, 1}^6) < \cos \left(\frac{j_1^6}{\sqrt{(7.5)^2 - 143/12}} \right) \doteq 0.0784,$$

which is a contradiction. Thus, we have shown that if $\nu = \nu_1^6 = \nu_2^3$, then $\nu \geq 7$. Moreover, we have also shown that if $\nu_1^6 = \nu_2^3$ for some ϕ_0, then $\phi_0 \leq \text{arc} \cos \sqrt{929}$.

Part 2. By the relationship in (B), we are motivated to define a function $z_0(\nu)$ for $\nu \geq 7$ as follows:

$$(3.1) \quad z_0(\nu) = \left(\frac{\nu(\nu + 1) - 20}{\nu(\nu + 1) + 60} \right)^{1/2}.$$

For such a $z_0(\nu)$, we also define $\phi_0(\nu) = \text{arc} \cos(z_0(\nu))$ and observe that

$$(3.2) \quad \sin^2(\phi_0(\nu)) = \frac{80}{\nu(\nu + 1) + 60}.$$

From (2.12a), (2.10), and (3.2), with $m = 6$, $k = 1$ and $\phi = \text{arc} \cos \sqrt{929}$, we see that for all $\nu \geq 7$,

$$\sin^2(\phi_{\nu, 1}^6) \geq \sin^2 \left(\frac{j_1^6}{\sqrt{(\nu + 1/2)^2 - \frac{b^2}{4}}} \right)$$

$$\geq \frac{(j_1^6)^2}{\nu(\nu + 1) + \frac{b^2}{4} + \alpha(\phi)(j_1^6)^2}$$

$$= \frac{80}{\nu(\nu + 1) + 60}$$

$$= \sin^2(\phi_0(\nu)), $$

where $j_1^6 \doteq 9.9361$. To complete the proof, we observe that if $\nu^* = \nu_1^6 = \nu_2^3$ for some $\nu^* \geq 7$, then necessarily we must have $\phi_{\nu^*, 1}^6 = \phi_{\nu^*, 2}^3 = \phi_0(\nu^*)$.

However, from (3.3) we see that $\phi_0(\nu) < \phi_{\nu, 1}^6$ for all $\nu \geq 7$. It follows that $\nu_1^6 \neq \nu_2^3$ for $0 < \phi_0 < \pi$. Since $\nu_2^3 < \nu_1^6$ for $\pi/2 \leq \phi_0 < \pi$, we conclude that $\nu_2^3 < \nu_1^6$ for all $0 < \phi_0 < \pi$ (or equivalently, for all $z_0 \in (-1, 1)$).
As a consequence of (1.1)–(1.5) and Theorem 1, we see that the first eleven ν-zeroes are

(3.4)
\[

v_0^0 < v_1^1 < v_2^2 < v_3^3 < v_4^4 < v_5^5 < v_6^6 < v_7^7 < v_8^8 < v_9^9 < v_{10}^0 < 1,
\]

and that this ordering is unique. The inequalities $v_0^0 < v_1^1$, $v_2^2 < v_3^3$, and $v_4^4 < v_1^1$ were established in [2] for $0 < z_0 < 1$. By applying (2.8) and arguing as we did at the beginning of the proof of Theorem 1, these inequalities can be shown to hold for $-1 < z_0 < 0$ as well. In particular, we have the following:

Theorem 2. $v_2^0 < v_1^1$, $v_2^1 < v_1^3$, $v_3^0 < v_1^5$ for all $z_0 \in (-1, 1)$.

The inequality $v_j^{m+2} < v_j^m$ for $0 < z_0 < 1$ was established in [2]. Next, we consider the case $-1 < z_0 < 0$.

Lemma 2. If $-1 < z_0 < 0$, then $v_j^m < v_{j+1}^m$.

Proof. The v_j^m's are simple zeroes of $P^m_{\nu}(z_0)$. (See [2].) From (1.1), we have that $v_j^m, v_{j+1}^m \in (\nu_j^{m+1}, \nu_{j+1}^{m+1})$. Suppose that $v_j^{m+2}(z_0) < v_{j+1}^m(z_0)$ for some $z_0 \in (-1, 0)$. From (2.7)–(2.8), we see that

\[

\text{sign}(P_{\nu}^m(z_0)) = (-1)^{m+j}, \quad v_j^m < v < v_{j+1}^m, \quad z_0 \in (-1, 0).
\]

The signs of $P_{\nu}^{m+1}(z_0)$ and $P_{\nu}^{m+2}(z_0)$ can also be determined in this way. We are led to the results summarized in Table 1.

Table 1. Suppose $v_j^{m+2}(z_0) \leq v_j^m(z_0)$ for $z_0 \in (-1, 0)$

<table>
<thead>
<tr>
<th>$z_0 \in (-1, 0)$</th>
<th>$v \in (v_j^{m+1}, v_j^{m+2})$</th>
<th>$v \in (v_j^{m+2}, v_{j+1}^m)$</th>
<th>$v \in (v_{j+1}^m, v_{j+1}^{m+1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{sign($P_{\nu}^m(z_0)$)}</td>
<td>$(-1)^{m+j}$</td>
<td>$(-1)^{m+j}$</td>
<td>$(-1)^{m+j+1}$</td>
</tr>
<tr>
<td>\text{sign($P_{\nu}^{m+1}(z_0)$)}</td>
<td>$(-1)^{m+j+1}$</td>
<td>$(-1)^{m+j+1}$</td>
<td>$(-1)^{m+j+1}$</td>
</tr>
<tr>
<td>\text{sign($P_{\nu}^{m+2}(z_0)$)}</td>
<td>$(-1)^{m+j+1}$</td>
<td>$(-1)^{m+j+2}$</td>
<td>$(-1)^{m+j+2}$</td>
</tr>
</tbody>
</table>

The second column in Table 1 contradicts (2.3), and we conclude that $v_j^{m+2} > v_j^m$ for all $z_0 \in (-1, 0)$.

From (1.1)–(1.3) and Lemma 2, we are led to the following:

Theorem 3. If $v_j^m(z_0)$ is a solution of (*), then

(i) $v_j^{m+1} < v_j^{m+2} < v_j^{m+1}$, \quad $-1 < z_0 < 0$,

(ii) $v_j^{m+2} = v_j^{m+1} = m + 2j - 1$, \quad $z_0 = 0$,

(iii) $v_j^{m+1} < v_j^{m+2} < v_j^m < v_j^{m+1}$, \quad $0 < z_0 < 1$.

4. **Concluding remarks**

Since the zeroes of the Bessel functions are distinct [9, p. 484] the elements of $\mathcal{J} = \{j_k^m\}$ can be arranged as an increasing sequence. In particular, we can
define integer-valued functions \(m(i) \), \(k(i) \) so that \(j_{k(i)}^m \) denotes the \(i \)th element in the sequence \(\mathcal{J} \). Clearly, there is no such ordering of all the elements of \(\mathcal{N}_{\phi} = \{ \nu_j^m(\phi_0) \} \) that is independent of \(\phi_0 \). On the other hand, if we let
\[
\overline{\phi} = \phi_0 = \nu_{\nu,k}^m \quad \text{and} \quad \nu = \nu_k^m(\phi_0) \quad \text{in (2.12), we see that}
\]
\[
(4.1) \quad \lim_{\phi_0 \to 0^+} \phi_0 \left(\nu_k^m(\phi_0) + \frac{1}{2} \right) = j_k^m.
\]

The limit in (4.1) is related to the well-known result, \(\lim_{n \to \infty} \phi_0^0, k(n + \frac{1}{2}) = j_k^0 \) (see [8]) and implies that for \(\phi_0 \) sufficiently small, \(\nu_{k(i)}^m(\phi_0) \) is the \(i \)th element in the sequence \(\mathcal{N}_{\phi} = \{ \nu_{j(i)}^m(\phi_0) \} \).

In view of (1.6) and the first two inequalities in (1.4), it is natural to con-
jecture if there is an inequality that relates \(\nu_{j+1}^m \) and \(\nu_{j+3}^m \) for \(\phi_0 \in (0, \pi/2) \). Such an inequality is not possible. From [1], we see that
\[
\begin{align*}
j_{k(18)}^m &= j_{k(18)}^8 = 12.225, \quad \text{and} \quad j_{k(19)}^m = j_5^5 = 12.338. \quad \text{Since} \quad \nu_1^8(\pi/2) = 9, \quad \nu_2^6(\pi/2) = 8, \quad \text{and} \quad j_1^8 < j_2^5, \quad \text{we conclude that} \quad \nu_1^8(\phi_0) = \nu_2^6(\phi_0) \quad \text{for some} \quad \phi_0 \in (0, \pi/2). \quad \text{Numerical calculations indicate that} \quad \nu_1^8 = \nu_2^5 = 26.706 \quad \text{when} \quad \phi_0 = 26.134^\circ.
\end{align*}
\]

Although (1.5) and Theorem 1 demonstrate that the first eleven \(\nu \)-zeros of
\(P_n^m(\cos \phi_0) \) are distinct for \(0 < \phi_0 < \pi/2 \), the twelfth \(\nu \)-zero is not necessarily distinct. Since \(\nu_1^3(\pi/2) = 6, \quad \nu_1^5(\pi/2) = 7, \quad \text{and} \quad j_{k(12)}^m = j_6^6 = 9.936, \quad \text{and} \quad j_{k(13)}^m = j_1^3 = 10.173, \) from (4.1), we see that \(\nu_1^6(\phi_0) = \nu_1^3(\phi_0) \) for some \(\phi_0 \in (0, \pi/2). \) Numerics indicate \(\nu_1^6 = \nu_3^1 = 15.780 \) when \(\phi_0 = 35.821^\circ \) (see [2]).

REFERENCES

2. F. Baginski, Ordering the zeroes of the Legendre functions \(P_n^m(z_0) \) when considered as a function of \(\nu \), J. Math. Anal. Appl. 147 (1990), 296–308.