Blow-up of $H^ 1$ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity
HTML articles powered by AMS MathViewer
- by Takayoshi Ogawa and Yoshio Tsutsumi
- Proc. Amer. Math. Soc. 111 (1991), 487-496
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045145-5
- PDF | Request permission
Abstract:
We investigate the blow-up of solutions in ${H^1}({\mathbf {R}})$ with negative energy for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity: \[ \begin {gathered} i{u_t} = - {u_{xx}} - |u{|^4}u,\quad t > 0,x \in {\mathbf {R}}, \hfill \\ u(0,x) = {u_0}(x),\quad x \in {\mathbf {R}}. \hfill \\ \end {gathered} .\] In our result we remove the weight condition $x{u_0} \in {L^2}({\mathbf {R}})$, which was always assumed to show the blow-up of solutions in the previous papers.References
- Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$, Manuscripta Math. 61 (1988), no. 4, 477–494. MR 952091, DOI 10.1007/BF01258601 —, The structure of solutions to the pseudoconformally invariant nonlinear Schrödinger equation, Proc. Roy. Sci. Edinburgh (to appear). L. M. Degtyarev, V. E. Zakharov, and L. I. Rudakov, Two examples of Langmuir wave collapse, Soviet Phys. JETP 41 (1975), 57-61.
- J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. II. Scattering theory, general case, J. Functional Analysis 32 (1979), no. 1, 33–71. MR 533219, DOI 10.1016/0022-1236(79)90077-6
- R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), no. 9, 1794–1797. MR 460850, DOI 10.1063/1.523491
- Tosio Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), no. 1, 113–129 (English, with French summary). MR 877998 —, Nonlinear Schrödinger equations, preprint.
- O. Kavian, A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), no. 1, 193–203. MR 869407, DOI 10.1090/S0002-9947-1987-0869407-0
- B. LeMesurier, G. Papanicolaou, C. Sulem, and P.-L. Sulem, The focusing singularity of the nonlinear Schrödinger equation, Directions in partial differential equations (Madison, WI, 1985) Publ. Math. Res. Center Univ. Wisconsin, vol. 54, Academic Press, Boston, MA, 1987, pp. 159–201. MR 1013838
- Jeng Eng Lin and Walter A. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Functional Analysis 30 (1978), no. 2, 245–263. MR 515228, DOI 10.1016/0022-1236(78)90073-3
- F. Merle, Limit of the solution of a nonlinear Schrödinger equation at blow-up time, J. Funct. Anal. 84 (1989), no. 1, 201–214. MR 999497, DOI 10.1016/0022-1236(89)90119-5
- Frank Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys. 129 (1990), no. 2, 223–240. MR 1048692, DOI 10.1007/BF02096981
- Frank Merle and Yoshio Tsutsumi, $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations 84 (1990), no. 2, 205–214. MR 1047566, DOI 10.1016/0022-0396(90)90075-Z
- Hayato Nawa, “Mass concentration” phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity, Funkcial. Ekvac. 35 (1992), no. 1, 1–18. MR 1172417
- Hayato Nawa and Masayoshi Tsutsumi, On blow-up for the pseudo-conformally invariant nonlinear Schrödinger equation, Funkcial. Ekvac. 32 (1989), no. 3, 417–428. MR 1040169
- Takayoshi Ogawa and Yoshio Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations 92 (1991), no. 2, 317–330. MR 1120908, DOI 10.1016/0022-0396(91)90052-B
- Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162. MR 454365, DOI 10.1007/BF01626517
- Walter A. Strauss, Nonlinear wave equations, CBMS Regional Conference Series in Mathematics, vol. 73, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR 1032250
- Masayoshi Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal. 15 (1984), no. 2, 357–366. MR 731873, DOI 10.1137/0515028 Y. Tsutsumi, Rate of ${L^2}$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, Nonlinear Anal. (to appear).
- Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), no. 4, 567–576. MR 691044, DOI 10.1007/BF01208265
- Michael I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations 11 (1986), no. 5, 545–565. MR 829596, DOI 10.1080/03605308608820435 —, The nonlinear Schrödinger equation—Singularity formation, stability and dispersion, The Connection between Infinite and Finite Dimensional Dynamical Systems, Contemp. Math., vol. 99, Amer. Math. Soc., Providence, RI, 1989, pp. 213-232.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 487-496
- MSC: Primary 35B05; Secondary 35Q55
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045145-5
- MathSciNet review: 1045145