On the action of Steenrod squares on polynomial algebras
HTML articles powered by AMS MathViewer
- by William M. Singer
- Proc. Amer. Math. Soc. 111 (1991), 577-583
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045150-9
- PDF | Request permission
Abstract:
Let ${P_s}$ be the $\bmod - 2$ cohomology of the elementary abelian group $(Z/2Z) \times \cdots \times (Z/2Z)$ ($s$ factors). The $\bmod - 2$ Steenrod algebra $A$ acts on ${P_s}$ according to well-known rules. If ${\mathbf {A}} \subset A$ denotes the augmentation ideal, then we are interested in determining the image of the action ${\mathbf {A}} \otimes {P_s} \to {P_s}$: the space of elements in ${P_s}$ that are hit by positive dimensional Steenrod squares. The problem is motivated by applications to cobordism theory [P1] and the homology of the Steenrod algebra [S]. Our main result, which generalizes work of Wood [W], identifies a new class of hit monomials.References
- J. F. Adams, On formulae of Thom and Wu, Proc. London Math. Soc. (3) 11 (1961), 741β752. MR 139177, DOI 10.1112/plms/s3-11.1.741
- E. H. Brown Jr. and F. P. Peterson, $H^{\ast } (M\textrm {O})$ as an algebra over the Steenrod algebra, Conference on homotopy theory (Evanston, Ill., 1974) Notas Mat. Simpos., vol. 1, Soc. Mat. Mexicana, MΓ©xico, 1975, pp.Β 11β19. MR 761717
- Franklin P. Peterson, $A$-generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), no.Β 2, 311β312. MR 974987, DOI 10.1017/S0305004100067803 β, Generators of ${H^ * }(R{P^\infty } \wedge R{P^\infty })$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., no. 833, April 1987.
- William M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no.Β 4, 493β523. MR 1022818, DOI 10.1007/BF01221587
- R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), no.Β 2, 307β309. MR 974986, DOI 10.1017/S0305004100067797
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 577-583
- MSC: Primary 55S10; Secondary 55Q10, 55Q40, 55S05, 55T15
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045150-9
- MathSciNet review: 1045150