Convergence of arguments of Blaschke products in $L_ p$-metrics
HTML articles powered by AMS MathViewer
- by A. V. Rybkin
- Proc. Amer. Math. Soc. 111 (1991), 701-708
- DOI: https://doi.org/10.1090/S0002-9939-1991-1010000-3
- PDF | Request permission
Abstract:
It is shown that the naturally defined argument of a Blaschke product is a function which is the harmonic conjugate of an integrable function of constant sign. A direct construction of this function is obtained. This fact allows us to investigate the relation between conditions on the zeros of a Blaschke product and the convergence of the arguments of its partial finite subproducts in ${L_p}$-metrics, $0 < p \leq \infty$.References
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999
- Peter Colwell, Blaschke products, University of Michigan Press, Ann Arbor, MI, 1985. Bounded analytic functions. MR 779463
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- S. V. HruÅ”Äev and S. A. Vinogradov, Inner functions and multipliers of Cauchy type integrals, Ark. Mat. 19 (1981), no.Ā 1, 23ā42. MR 625535, DOI 10.1007/BF02384467
- Paul Koosis, Introduction to $H_{p}$ spaces, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolffās proof of the corona theorem. MR 565451
- C. N. Linden, On Blaschke products diverging everywhere on the boundary of the unit disc, Proc. Amer. Math. Soc. 55 (1976), no.Ā 1, 62ā64. MR 393494, DOI 10.1090/S0002-9939-1976-0393494-8
- N. K. Nikolā²skiÄ, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. HruÅ”Äev [S. V. KhrushchĆ«v] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1 A. V. Rybkin, The spectral shift function for a dissipative and selfadjoint operator, and trace formulas for resonances, Math. USSR-Sb. 53 (1986), 421-431.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 701-708
- MSC: Primary 30D50; Secondary 30E25
- DOI: https://doi.org/10.1090/S0002-9939-1991-1010000-3
- MathSciNet review: 1010000