Functorial finite subcategories over triangular matrix rings
HTML articles powered by AMS MathViewer
- by S. O. Smalø
- Proc. Amer. Math. Soc. 111 (1991), 651-656
- DOI: https://doi.org/10.1090/S0002-9939-1991-1028295-9
- PDF | Request permission
Abstract:
Let $\Lambda$ and $\Gamma$ be Artin algebras, $M$ a $\Gamma - \Lambda$-bimodule, and $R$ the triangular matrix ring of $\Lambda ,\Gamma$, and $M$; assume that $R$ is also an Artin algebra. The $R$-modules are triples $(U,V,f)$ where $U$ is a $\Lambda$-module, $V$ is a $\Gamma$-module, and $f$ is a $\Gamma$-homomorphism from $M \otimes U$ to $V$. For an Artin algebra $S$, let $\operatorname {mod} S$ denote the category of finitely generated $S$-modules. For full subcategories $S$ of $\operatorname {mod} \Lambda$ and $T$ of $\operatorname {mod} \Gamma$, let $\operatorname {mod} R_T^S$ denote the full subcategory consisting of the modules $(U,V,f)$, where $U$ is in $S$ and $V$ is in $T$. In this paper it is proved that $\operatorname {mod} R_T^S$ is functorially finite in $\operatorname {mod} R$ if and only if $S$ is functorially finite in $\operatorname {mod} \Lambda$ and $T$ is functorially finite in $\operatorname {mod} \Gamma$. Using this result, we increase the known examples of functorially finite subcategories considerably, hence also the classes of subcategories having relative almost split sequences.References
- M. Auslander and Sverre O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61–122. MR 591246, DOI 10.1016/0021-8693(80)90113-1
- M. Auslander and Sverre O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), no. 2, 426–454. MR 617088, DOI 10.1016/0021-8693(81)90214-3
- Robert M. Fossum, Phillip A. Griffith, and Idun Reiten, Trivial extensions of abelian categories, Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin-New York, 1975. Homological algebra of trivial extensions of abelian categories with applications to ring theory. MR 0389981
- K. Igusa, S. O. Smalø, and G. Todorov, Finite projectivity and contravariant finiteness, Proc. Amer. Math. Soc. 109 (1990), no. 4, 937–941. MR 1027094, DOI 10.1090/S0002-9939-1990-1027094-0 J. A. de la Peña and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, preprint, 1989. R. Grecht, Kategorien von Moduln mit Untermoduln, Diplomarbeit, Zürich, 1986.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 651-656
- MSC: Primary 16D90; Secondary 16D20, 16P20, 18A25
- DOI: https://doi.org/10.1090/S0002-9939-1991-1028295-9
- MathSciNet review: 1028295