ON \(p - C^* \) SUMMING OPERATORS

KRZYSZTOF NOWAK

(Communicated by John B. Conway)

Abstract. We prove that every bounded linear operator \(T : \mathcal{A} \to C_p(H) \) such that \(i \circ T : \mathcal{A} \to B(H) \) is positive (where \(\mathcal{A} \) is a unital \(C^* \)-algebra, \(C_p(H) \) a Schatten class, \(i \) the identity map from \(C_p(H) \) into \(B(H) \)) is \(p - C^* \) summing. This permits us to characterize \(p - C^* \) summing operators in some classes of multipliers.

Introduction

Gilles Pisier introduced the notion of \(p - C^* \) summing operator in order to prove Grothendieck's inequality for noncommutative \(C^* \)-algebras (see [5]). In fact he used, in his proof, only 4 and \(2 - C^* \) summing operators. In this paper we prove that every bounded operator \(T : \mathcal{A} \to C_p(H) \) such that \(i \circ T \) is positive (where \(\mathcal{A} \) is a unital \(C^* \)-algebra, \(C_p(H) \) a Schatten class, \(i \) the canonical embedding of \(C_p(H) \) in \(B(H) \)) is \(p - C^* \) summing. We remark that, for \(1 \leq p < 2 \), the assumption "\(i \circ T \) is positive" cannot be omitted. Using this result, we give the characterisation of \(p - C^* \) summing operators in the class of multiplier operators on \(B(H) \) and positive Herz-Schur multipliers.

1. On positive \(p - C^* \) summing operators

A linear map \(T \) from a \(C^* \)-algebra \(\mathcal{A} \) into a Banach space \(X \) is \(p - C^* \) summing (we assume \(p \geq 1 \)) if there is a constant \(c \) such that, for any finite sequence

\[\{x_i\}_{i=1}^N \subset \mathcal{A}^h = \{ x \in \mathcal{A} : x^* = x \}, \]

the following condition holds:

\[\left(\sum_{i=1}^N \|Tx_i\|^p \right)^{1/p} \leq c \left(\sum_{i=1}^N |x_i|^p \right)^{1/p}, \]

where

\[|x| = (x^*x)^{1/2}. \]
The least constant \(c \) for which this condition is satisfied is denoted by \(c_p(T) \).

It is shown in [5] that \(T \) is \(p - C^* \) summing if and only if there is a constant \(c \) and a state \(\varphi \) on \(\mathcal{A} \) such that, for all \(x \) in \(\mathcal{A}^h \),

\[
\|Tx\| \leq c \varphi(|x|^p)^{1/p}.
\]

The least of those constants is equal to \(c_p(T) \).

Let \(\mathcal{A} \) and \(\mathcal{B} \) be two \(C^* \)-algebras and \(T : \mathcal{A} \to \mathcal{B} \) a linear map. \(T \) is
called positive if \(Tx \) is positive in \(\mathcal{B} \) for all positive \(x \) in \(\mathcal{A} \) and completely
positive if \(T \otimes i_n : \mathcal{A} \otimes M_n \to \mathcal{B} \otimes M_n \) is positive for all natural \(n \).

We will use the following notation:

- \(B(H) \)—algebra of all bounded linear operators on the Hilbert space \(H \) equipped with operator norm,
- \(C(H) \)—the ideal of compact operators on \(H \),
- \(C_p(H) \)—Schatten class, i.e., operators in \(C(H) \) of the form

\[
\sum_i \lambda_i \varphi_i \otimes \psi_i = \sum_i \lambda_i (\cdot, \psi_i) \varphi_i,
\]

where \(\{\varphi_i\}, \{\psi_i\} \) are orthonormal sets in \(H \) and \(\sum_i |\lambda_i|^p < \infty \) with
the norm \(\| \sum_i \lambda_i \varphi_i \otimes \psi_i \|_p = (\sum_i |\lambda_i|^p)^{1/p} \).

We will need

Lemma 1.1. [7, p. 95]. Let \(H \) be a Hilbert space, and let \(A, B \) be positive
operators in \(B(H) \). If \(p \geq 2 \) and \(B \in C_p(H) \) then \(\|AB\|_p \leq \|A^{p/2}B^{p/2}\|_2^p \).

Theorem 1.2. Let \(\mathcal{A} \) be a unital \(C^* \)-algebra and \(H \) be a Hilbert space. If
\(T : \mathcal{A} \to C_p(H) \) \((p \geq 1) \) is a bounded linear map such that \(i \circ T : \mathcal{A} \to B(H) \)
is positive (where \(i : C_p(H) \to B(H) \) denotes the identity map), then \(T \) is \(p - C^* \)
summing and \(c_p(T) \leq \|T\| \).

Proof. Let \(x \) be a hermitian element of \(\mathcal{A} \), and let \(\mathcal{B} \) be a unital \(C^* \)-algebra
generated by \(x \). Since \(\mathcal{B} \) is commutative, \(T : \mathcal{B} \to B(H) \) is completely
positive and, by Stinespring’s theorem, may be represented in the form \(Ty = V^* \pi(y)V \) for all \(y \in \mathcal{B} \), where \(\pi : \mathcal{B} \to B(R) \) is a unital \(\ast \)-representation on
a Hilbert space \(R \) and \(V : H \to R \) is a bounded linear operator (see [1]).

Setting \(V_1 = \begin{bmatrix} 0 & V \\ 0 & 0 \end{bmatrix} \), an element of \(B(R \oplus H) \), and \(\pi_1(y) = \begin{bmatrix} \pi(y) & 0 \\ 0 & 0 \end{bmatrix} \), a
\(\ast \)-representation of \(\mathcal{B} \) in \(R \oplus H \), we have \(\pi_1(|x|) = |\pi_1(x)| = U^* \pi_1(x) \) for a
unitary \(U \in B(R \oplus H) \) which commutes with \(\pi_1(x) \), and we may write

\[
\|Tx\|_p = \|V^* \pi(x)V\|_p = \|V_1^* \pi_1(x) V_1\|_p
\]

\[
= \|V_1^* U \pi_1(|x|^{1/2}) \pi_1(|x|^{1/2}) V_1\|_p
\]

\[
\leq \|V_1^* U \pi_1(|x|^{1/2})\|_{2p} \|\pi_1(|x|^{1/2}) V_1\|_{2p}
\]

\[
= \|V_1^* \pi_1(|x|^{1/2}) U\|_{2p} \|\pi_1(|x|^{1/2}) V_1\|_{2p}
\]

\[
\leq \|\pi_1(|x|^{1/2}) V_1\|_{2p}^2 \leq \|\pi_1(|x|^{1/2}) V_1^*\|_{2p}^2.
\]
An application of Lemma 1.1 gives
\[\|Tx\|_p \leq \|\pi_1(|x|^{p/2})V_1^{*}\|_2^{2/p} \]
\[= (\text{tr}|V_1^{*}|^p \pi_1(|x|^p)V_1^{*})^{1/p} \]
\[= (\text{tr}(V_1V_1^*)\pi_1(|x|^p))^{1/p}. \]

Since \((V_1V_1^*)^m/n = V_1(V_1^*V_1)^{m-1}V_1^*\) for all natural \(m, n\) such that \(m \geq n\) (to see this take the \(n\)th power of both sides), we have, by continuity argument,
\((V_1V_1^*)^p = V_1(V_1^*V_1)^{p-1}V_1^* \), and it follows that
\[\|Tx\|_p \leq (\text{tr}V_1(V_1^*V_1)^{p-1}V_1^*\pi_1(|x|^{p}))^{1/p} \]
\[= (\text{tr}(V_1^*V_1)^{p-1}V_1^*\pi_1(|x|^{p}))^{1/p} \]
\[= (\text{tr}(V_1^*V_1)^{p-1}V_1^*\pi_1(|x|^{p}))^{1/p} \]
\[= (\text{tr}(T^e)^{p-1}T(|x|^p))^{1/p}. \]

It is easily seen that the functional \(x \mapsto \text{tr}(T^e)^{p-1}T(x) \) is positive on \(\mathcal{A} \) and its norm equals \(\|T^e\|_p \), so the proof is complete.

Remark 1.3. Proposition 2.3 shows that, for \(1 < p < 2 \), the assumption \(i \circ T \) is positive is essential.

Corollary 1.4. Let \(\mathcal{A} \) be a \(C^* \)-algebra with the unit \(e \), and let \(H \) be a Hilbert space. If \(T : \mathcal{A} \rightarrow B(H) \) is a positive linear map and \(T e \in C_p(H) \) (\(p \geq 1 \)), then \(T \) is \(p - C^* \) summing, \(c_p(T) \leq \|T e\|_p \), \(T(\mathcal{A}) \subset C_p(H) \) and \(T \) is bounded as the map from \(\mathcal{A} \) into \(C_p(H) \) with the norm \(\|T e\|_p \).

Proof. Taking unitary element \(u \) instead of hermitian \(x \) in the first part of the proof of Theorem 1.2, we get \(\|Te\|_p = \|V^*V\|_p = \|V_1^*V_1\|_p \), so \(V_1 \in C_{2p}(R \oplus H) \) and \(\|V_1\|_{2p}^2 = \|Te\|_p \), \(\|Tu\|_p = \|V_1^*\pi_1(u)V_1\|_p = \|\pi_1(u)||\|V_1\|_{2p}^2 \leq \|Te\|_p \). Since \(\sup\{\|Tx\|_p : \|x\| \leq 1\} = \sup\{\|Tu\|_p : u \text{-unitary}\} \) (see [3]), we know that \(T \) is bounded as the map from \(\mathcal{A} \) into \(C_p(H) \) and its norm equals \(\|Te\|_p \). The rest immediately follows from Theorem 1.2.

We will demonstrate that, in some cases, the assumption \(Te \in C_p(H) \) of Corollary 1.4 is not only sufficient but also necessary.

2. APPLICATION TO MULTIPLIER OPERATORS

Let \(B \in B(H) \) and \(T_B \) be a mapping from \(B(H) \) into \(B(H) \) defined by \(T_B(A) = BAB^* \).

Proposition 2.1. Let \(p \geq 1 \). Then \(T_B \) is a \(p - C^* \) summing operator if and only if \(B^*B \) belongs to \(C_p(H) \); moreover, \(c_p(T) = \|B^*B\|_p \).
Proof. Let us assume that T_B is a $p - C^*$ summing operator and $\{\varphi_i\}$ an arbitrary orthonormal basis in H. We may write

$$\sum_{i=1}^{n} \langle B^* B \varphi_i, \varphi_i \rangle^p = \sum_{i=1}^{n} \| (\varphi_i \otimes \varphi_i) B^* B (\varphi_i \otimes \varphi_i) \|^p$$

$$= \sum_{i=1}^{n} \| B (\varphi_i \otimes \varphi_i) B^* \|^p \leq c_p^p(T_B).$$

Let $T = B^* B = \int_0^\|T\| \lambda dE(\lambda)$ be a spectral decomposition of T. We have

$$T \geq \int_\epsilon^\|T\| \lambda dE(\lambda) \geq \epsilon E((\epsilon, \|T\|)),$$

and, since

$$\sum_{i} \langle T \varphi_i, \varphi_i \rangle^p \leq c_p^p(T_B),$$

for any orthonormal basis $\{\varphi_i\}$, we get that the operator $E((\epsilon, \|T\|))$ is of finite rank. Hence T is compact and may be represented in the following form: $T = \sum_i \lambda_i \psi_i \otimes \psi_i$, $\{\psi_i\}$ is an orthonormal basis in H. Since

$$\sum_{i} \lambda_i^p = \sum_{i} \langle T \psi_i, \psi_i \rangle^p \leq c_p^p(T_B),$$

we infer that $B^* B$ belongs to $C_p(H)$, $\|B^* B\|_p \leq c_p(T_B)$.

The converse is an immediate consequence of Corollary 1.4. \(\square\)

Now we consider the left regular representation on $B(H)$. For $B \in B(H)$, we define $L_B : B(H) \to B(H)$ by the formula $L_B(A) = BA$.

Proposition 2.2. Let $p \geq 2$. Then L_B is $p - C^*$ summing if and only if B belongs to $C_p(H)$; moreover, $c_p(L_B) = \|B\|_p$.

Proof. Let us assume that L_B is $p - C^*$ summing and that $\{\varphi_i\}$ is an arbitrary orthonormal basis in H. Then

$$\sum_{i=1}^{n} \| (\varphi_i \otimes \varphi_i) B^* B (\varphi_i \otimes \varphi_i) \|^p/2$$

$$= \sum_{i=1}^{n} \| B (\varphi_i \otimes \varphi_i) \|^p \leq c_p^p(L_B).$$

Following the reasoning from Proposition 2.1, we state that $B^* B \in C_{p/2}(H)$ and $\|B^* B\|_{p/2} \leq c_p^2(L_B)$, hence $\|B\|_p \leq c_p(L_B)$. If $B \in C_p(H)$ then $\|BA\| = \|BA^2 B^*\|^{1/2} \leq c_p^{1/2}(T_B) \varphi(A)^{1/2}$, where φ is a state on $B(H)$. We have $c_p(L_B) \leq c_p^{1/2}(T_B) = \|B^* B\|_p = \|B\|_p$. \(\square\)

Proposition 2.3. If $1 \leq p < 2$, $B \in B(H)$ and $B \neq 0$, then L_B is not $p - C^*$ summing.

Proof. To see this, let us show first that, for any $\varphi \in H$, $\|\varphi\| = 1$, $L_{\varphi \otimes \varphi}$ is not $p - C^*$ summing. For all natural n we can find orthonormal vectors $\{\varphi_i\}_{i=1}^{n}$
such that

\[\varphi = \sum_{i=1}^{n} \frac{1}{\sqrt{n}} \varphi_i. \]

and

\[\sum_{i=1}^{n} \| (\varphi \otimes \varphi) (\varphi_i \otimes \varphi_i) \|^p = \sum_{i=1}^{n} (\varphi, \varphi_i)^p = n^{(2-p)/2}, \]

so the operator \(L_{\varphi \otimes \varphi} \) is not \(p - C^* \) summing.

Let us assume that \(B \in B(H) \), \(B \neq 0 \) and \(L_B \) is \(p - C^* \) summing. We can find \(\xi \in H \), \(\| \xi \| = 1 \), such that

\[(\xi \otimes \bar{\xi}) B = \xi \otimes \bar{B^*} \xi \neq 0. \]

We see that \(L_{\xi \otimes \bar{B^*} \xi} \) is \(p - C^* \) summing, so

\[L_{B^* \xi \otimes \bar{\xi}} \circ L_{B \xi} = L_{(\xi \otimes \bar{B^*} \xi)^*} \circ L_{(\xi \otimes \bar{B^*} \xi)} \]

is non-zero and \(p - C^* \) summing, and we are done. \(\Box \)

Let \(H \) be a Hilbert space and \(\{\varphi_i\} \) an orthonormal basis of \(H \). Let \(M = (m_{ij}) \) be a positive Herz-Schur multiplier, i.e., for every \(A \) in \(B(H) \), there is a \(B \) in \(B(H) \) such that

\[\langle B \varphi_j, \varphi_i \rangle = m_{ij} \langle A \varphi_j, \varphi_i \rangle, \]

for any finite sequence of complex numbers

\[\{\xi_i\}_{i=1}^{N}, \quad \sum_{ij} m_{ij} \xi_i \bar{\xi_j} \geq 0. \]

We see that \(M \) defines a bounded positive linear operator from \(B(H) \) into \(B(H) \). It is known that \(M \) is a positive Herz-Schur multiplier if and only if there is a Hilbert space \(R \) and a sequence \(\{x_i\} \in R \) such that, for some constant \(c \), \(\|x_i\| \leq c \) for all \(i \) and \(m_{ij} = \langle x_i, x_j \rangle \) (see [2]), but we will not use this fact.

Proposition 2.4. \(M \) is \(p - C^* \) summing if and only if \(\sum_i m_{ii}^p < \infty \); moreover, \(c_p(M) = (\sum_i m_{ii}^p)^{1/p} \).

Proof. Assuming that \(M \) is \(p - C^* \) summing, we obtain

\[\sum_i m_{ii}^p = \sum_i \| M(\varphi_i \otimes \varphi_i) \|^p \leq c_p(M)^p. \]

The converse is an immediate consequence of Corollary 1.4. \(\Box \)

Remark 2.5. It is easily seen, in view of Corollary 1.4, that a positive Herz-Schur multiplier is \(p - C^* \) summing if and only if its image is contained in \(C_p(H) \).
Acknowledgments

This paper is based on my master's thesis dissertation, written at the University of Wroclaw, Poland under the direction of Professor Marek Bożejko. I would like to thank him for turning my attention to this subject and for many fruitful discussions. I would also like to thank Professor Ryszard Szwarc for interesting suggestions and simplifications in the proofs.

References

Institute of Mathematics, University of Wroclaw, 50-348 Wroclaw, Poland

Current address: Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri 63130