Algebras of invariant functions on the Šilov boundary of generalized half-planes
HTML articles powered by AMS MathViewer
- by Giovanna Carcano
- Proc. Amer. Math. Soc. 111 (1991), 743-753
- DOI: https://doi.org/10.1090/S0002-9939-1991-1039253-2
- PDF | Request permission
Abstract:
Let $\mathcal {N}$ be the nilpotent Lie group identified to the Šilov boundary of a symmetric generalized half-plane $\mathcal {D}$ and $L$ a compact group acting on $\mathcal {N}$ by automorphisms, arising from the realization of $\mathcal {D}$ as hermitian symmetric space. Is then $(L \ltimes \mathcal {N},L)$ a Gelfand pair? We study the problem and resolve it in the case of classical families.References
- C. Benson, J. Jenkins, and G. Ratcliff, On Gelfand pairs associated with nilpotent Lie groups, preprint.
- Giovanna Carcano, A commutativity condition for algebras of invariant functions, Boll. Un. Mat. Ital. B (7) 1 (1987), no. 4, 1091–1105 (English, with Italian summary). MR 923441 —, Hermitian symmetric spaces and Siegel domains, Boll. Un. Mat. It. (to appear).
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in $\textbf {C}^{n}$, Invent. Math. 62 (1980/81), no. 2, 325–331. MR 595591, DOI 10.1007/BF01389163
- A. Kaplan and F. Ricci, Harmonic analysis on groups of Heisenberg type, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 416–435. MR 729367, DOI 10.1007/BFb0069172 A. Korányi, Some applications of Gelfand pairs in classical analysis, C.I.M.E.-Summer School on Harmonic Analysis and Group Representation, Liquori, Napoli, 1982, pp. 335-348.
- Adam Korányi and Joseph A. Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265–288. MR 174787, DOI 10.2307/1970616
- R. D. Ogden and S. Vági, Harmonic analysis of a nilpotent group and function theory of Siegel domains of type $\textrm {II}$, Adv. in Math. 33 (1979), no. 1, 31–92. MR 540636, DOI 10.1016/S0001-8708(79)80009-2
- Ichirô Satake, Algebraic structures of symmetric domains, Kanô Memorial Lectures, vol. 4, Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J., 1980. MR 591460
- Stephen Vági, On the boundary values of holomorphic functions, Rev. Un. Mat. Argentina 25 (1970/71), 123–136. MR 318797
- Edoardo Vesentini, Holomorphic almost periodic functions and positive-definite functions on Siegel domains, Ann. Mat. Pura Appl. (4) 102 (1975), 177–202. MR 370066, DOI 10.1007/BF02410605
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 743-753
- MSC: Primary 22E30; Secondary 32M15, 43A20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1039253-2
- MathSciNet review: 1039253