Compactness in $L_ 1$, Dunford-Pettis operators, geometry of Banach spaces
HTML articles powered by AMS MathViewer
- by Maria Girardi
- Proc. Amer. Math. Soc. 111 (1991), 767-777
- DOI: https://doi.org/10.1090/S0002-9939-1991-1039256-8
- PDF | Request permission
Abstract:
A type of oscillation modeled on BMO is introduced to characterize norm compactness in ${L_1}$. This result is used to characterize the bounded linear operators from ${L_1}$ into a Banach space $\mathfrak {X}$ that map weakly convergent sequences onto norm convergent sequences (i.e., are Dunford-Pettis). This characterization is used to study the geometry of Banach spaces $\mathfrak {X}$ with the property that all bounded linear operators from ${L_1}$ into $\mathfrak {X}$ are Dunford-Pettis.References
- J. Bourgain, On martingales in conjugate Banach spaces (unpublished).
- J. Bourgain, Dunford-Pettis operators on $L^{1}$ and the Radon-Nikodým property, Israel J. Math. 37 (1980), no. 1-2, 34–47. MR 599300, DOI 10.1007/BF02762866
- J. Bourgain, Sets with the Radon-Nikodým property in conjugate Banach space, Studia Math. 66 (1979/80), no. 3, 291–297. MR 579734, DOI 10.4064/sm-66-3-291-297
- J. Bourgain and H. P. Rosenthal, Martingales valued in certain subspaces of $L^{1}$, Israel J. Math. 37 (1980), no. 1-2, 54–75. MR 599302, DOI 10.1007/BF02762868
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964 —, Progress in vector measures 1977-1983, Measure theory and its applications, Sherbrooke, Que., 1982), Lecture Notes in Math., vol. 1033, Springer-Verlag, Berlin, and New York, 1983, pp. 144-192.
- N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 70 (1987), no. 378, iv+116. MR 912637, DOI 10.1090/memo/0378
- Maria Girardi, Dentability, trees, and Dunford-Pettis operators on $L_1$, Pacific J. Math. 148 (1991), no. 1, 59–79. MR 1091530
- Maria Girardi and J. J. Uhl Jr., Slices, RNP, strong regularity, and martingales, Bull. Austral. Math. Soc. 41 (1990), no. 3, 411–415. MR 1071042, DOI 10.1017/S0004972700018281
- Robert C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738–743. MR 417763, DOI 10.1090/S0002-9904-1974-13580-9
- Ken Kunen and Haskell Rosenthal, Martingale proofs of some geometrical results in Banach space theory, Pacific J. Math. 100 (1982), no. 1, 153–175. MR 661446
- Minos Petrakis and J. J. Uhl Jr., Differentiation in Banach spaces, Proceedings of the analysis conference, Singapore 1986, North-Holland Math. Stud., vol. 150, North-Holland, Amsterdam, 1988, pp. 219–241. MR 930897, DOI 10.1016/S0304-0208(08)71340-9 Haskell Rosenthal, On the structure of non-dentable closed bounded convex sets, Adv. in Math. (to appear).
- Lawrence H. Riddle and J. J. Uhl Jr., Martingales and the fine line between Asplund spaces and spaces not containing a copy of $l_{1}$, Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio, 1981) Lecture Notes in Math., vol. 939, Springer, Berlin-New York, 1982, pp. 145–156. MR 668544
- Charles Stegall, The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 (1975), 213–223. MR 374381, DOI 10.1090/S0002-9947-1975-0374381-1
- Michel Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224. MR 756174, DOI 10.1090/memo/0307
- Alan Wessel, Some results on Dunford-Pettis operators, strong regularity and the Radon-Nikodým property, Séminaire d’Analyse Fonctionelle 1985/1986/1987, Publ. Math. Univ. Paris VII, vol. 28, Univ. Paris VII, Paris, 1988, pp. 17–32. MR 960286
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 111 (1991), 767-777
- MSC: Primary 46B20; Secondary 46A50, 46E30, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1991-1039256-8
- MathSciNet review: 1039256